1) x²+12x>0; x(x+12)>0; Нули неравенства: x=-12 или x=0. Ветви параболы направлены вверх, значит решением являются промежутки: (-∞;-12)∪(0;+∞). 2) 2x²-3x<0; x(2x-3)<0; Нули неравенства: х=0 или 2х-3=0; 2х=3; х=1,5. Ветви параболы направлены вверх, значит решением является промежуток: (0;1,5). 3) x²-7x-18>0; Находим нули неравенства: D=49+72=121; x1=(7-11)/2=-4/2=-2; x2=(7+11)/2=18/2=9. Ветви параболы направлены вверх, значит решением являются промежутки: (-∞;-2)∪(9;+∞). 4) x²-14x>0; x(x-14)>0; Нули неравенства: х=0 или х=14. Ветви параболы направлены вверх, значит решением являются промежутки: (-∞;0)∪(14;+∞). 5) 3x²+5x<0; х(3х+5)<0; Нули неравенства: 3х+5=0 или х=0; 3х=-5 х=-5/3. Ветви параболы направлены вверх, значит решением является промежуток: (-5/3;0). 6) x²-5x-24<0; Находим нули неравенства: D=25+96=121; x1=(5-11)/2=-6/2=-3; x2=(5+11)/2=16/2=8. Ветви параболы направлены вверх, значит решением является промежуток: (-3;8).
V реки=5км/ч, плот только 25 км, значит, он затратил по времени 25/5 = 5 (часов) Х км/ч - скорость лодки, тогда cкорость лодки по течению (Х-5) км/ч, а против течения (Х+5) км/ч Лодка по течению 48/(Х-5) часов, а против течения 48/(Х+5) часов, но т.к. она затратила на проплыв 1 час меньше, чем плот, то получаем: 48 +48 = 5 - 1 Х-5 Х+5 48*(Х+5) + 48*(Х-5) = 4*(Х-5)(Х+5) 48*(Х+5+Х-5) = 4*(Х²-25) 48*2Х = 4Х² - 100 4Х² - 96Х – 100 = 0 Х² - 24Х – 25=0 Д= (-24) ² - 4*1*(-25) = 576 + 100 = 676 Х1 = -(-24)+√676 = 24+26 = 50 = 25 (км/ч) 2*1 2 2 Х2 = -(-24)-√676 = 24-26 = -2 = -1 2*1 2 2 ответ: скорость моторной лодки в неподвижной воде = 25 км/ч
x(x+12)>0;
Нули неравенства:
x=-12 или x=0.
Ветви параболы направлены вверх, значит решением являются промежутки:
(-∞;-12)∪(0;+∞).
2) 2x²-3x<0;
x(2x-3)<0;
Нули неравенства:
х=0 или 2х-3=0;
2х=3;
х=1,5.
Ветви параболы направлены вверх, значит решением является промежуток:
(0;1,5).
3) x²-7x-18>0;
Находим нули неравенства:
D=49+72=121;
x1=(7-11)/2=-4/2=-2;
x2=(7+11)/2=18/2=9.
Ветви параболы направлены вверх, значит решением являются промежутки:
(-∞;-2)∪(9;+∞).
4) x²-14x>0;
x(x-14)>0;
Нули неравенства:
х=0 или х=14.
Ветви параболы направлены вверх, значит решением являются промежутки:
(-∞;0)∪(14;+∞).
5) 3x²+5x<0;
х(3х+5)<0;
Нули неравенства:
3х+5=0 или х=0;
3х=-5
х=-5/3.
Ветви параболы направлены вверх, значит решением является промежуток:
(-5/3;0).
6) x²-5x-24<0;
Находим нули неравенства:
D=25+96=121;
x1=(5-11)/2=-6/2=-3;
x2=(5+11)/2=16/2=8.
Ветви параболы направлены вверх, значит решением является промежуток:
(-3;8).