 
                                                 
                                                Changes made to your input should not affect the solution:
 (1): "c2"   was replaced by   "c^2".  2 more similar replacement(s).
 7.1    Find the Least Common Multiple 
      The left denominator is :       a-b 
      The right denominator is :       b-c 
      Least Common Multiple: 
      (a-b) • (b-c) 
 7.2    Calculate multipliers for the two fractions 
    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 
   Left_M = L.C.M / L_Deno = b-c
   Right_M = L.C.M / R_Deno = a-b
 7.3      Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well. 
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
 7.4       Adding up the two equivalent fractions 
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
 8.1    Find the Least Common Multiple 
      The left denominator is :       (a-b) • (b-c) 
      The right denominator is :       c-a 
      Least Common Multiple: 
      (a-b) • (b-c) • (c-a) 
 8.2    Calculate multipliers for the two fractions 
    Denote the Least Common Multiple by  L.C.M 
    Denote the Left Multiplier by  Left_M 
    Denote the Right Multiplier by  Right_M 
    Denote the Left Deniminator by  L_Deno 
    Denote the Right Multiplier by  R_Deno 
   Left_M = L.C.M / L_Deno = c-a
   Right_M = L.C.M / R_Deno = (a-b)•(b-c)
 8.3      Rewrite the two fractions into equivalent fractions
 8.4       Adding up the two equivalent fractions 
Processing ends successfully
