Сначала определим вероятность того, что среди выбранных четырех карт не окажется валетов. В колоде 32 карты не валеты. Вероятность того, что первая карта не валет равна 32/36 = 8/9. После этого останется 35 карт и 31 из них не валеты. Вероятность того, что вторая карта не валет, 31/35. Аналогично рассуждая получаем. что вероятность того, что третья карта не валет, равна 30/34 = 15/17, а для четвертой карты 29/33. Вероятность того, что среди четырех карт нет валетов, равна 8/9 * 31/35 * 15/17 * 29/33 = 7192/11781. Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 1 - 7192/11781 = 4589/11781. Округлив дробь до десятых, получим 0.4. ответ: Вероятность того, что среди четырех карт окажется хотя бы 1 валет, равна 0.4
I. 2x-5y-3=0 если х=0 то -5y-3=0 5y=-3 y=-3/5 и получаем точку a(0,-3/5) а если y=0 то 2x-3=0 2x=3 x=3/2 и получаем точку b(3/2,0)
в системе отсчёта нарисуем линию соединяющую эти точки. 2x-y=0 (*) и x-3y=4 (**) от (*) y=2x (***) поставим (***) в (**) и получим x-2x=4 от туда x=-4 (****) (****) в (***) y=-8 точка пересечения m(-4,-8)
III. нарисуем графику. от y=5 нарисуем прямую перпендикулярно оси Y...она пересекает прямую 3x+2y=4. от точки пересекания нарисуем прямую перпендикулярно оси X она пересекает ось X в точке -2,,,Это есть абсцисса точки с ординатой 5,
y'=(3x²(x²+3) - x³*2x)/(x² +3)² = (3x⁴ + 9x² - 2x³) /(x² + 3)²;
(3x⁴ + 9x² - 2x³) /(x² + 3)² = 0, ⇒(3x⁴ + 9x² - 2x³) = 0 , (x² + 3)² ≠ 0
(3x⁴ + 9x² - 2x³) = 0
x²(3x² +9 - 2x) = 0
x = 0 или 3х² -2х +9=0
нет корней
-∞ 0 +∞
+ + это знаки (3x⁴ + 9x² - 2x³) /(x² + 3)²
Функция убывает на всей области определения. х = 0 - точка перегиба.