1) a= 2
2) a= -1
Объяснение:
Применим теорему Виета: если x₁ и x₂ корни уравнения x²+p·x+q=0, то
x₁ + x₂ = -p и x₁ · x₂ = q.
По условию, корни уравнения являются противоположными числами, то есть x₁ = -x₂, тогда x₁≠0 и x₂≠0 и:
-p = x₁ + x₂ = (-x₂) + x₂=0 и q = x₁ · x₂ = (-x₂) · x₂ = -x₂² <0.
Отсюда: p=0 и q<0.
1) Если дано x²+(a-2)·x+(a-6)=0, то по вышесказанному
p=a-2=0 ⇒ a=2 и q=a-6=2-6=-4<0. Тогда
x²+(2-6)=0 ⇔ x²=4 ⇔ x=±2.
2) Если дано x²+(a+1)·x+(a-8)=0, то по вышесказанному
p=a+1=0 ⇒ a= -1 и q=a-8=-1-8=-9<0. Тогда
x²+(-1-8)=0 ⇔ x²=9 ⇔ x=±3.
тогда её скорость на обратном пути составила (х+1) км/ч,
а время на путь от пристани до острова равен 60/х км,
время на обратный путь равно 60/(х+1) ч.
По условию задачи, на обратный путь было потрачено на 3 часа меньше.
Составим уравнение:
60/х - 60/(х+1) = 3
60(х+1)-60х=3х(х+1)
60х+60-60х=3х²+3х
3х²+3х-60=0 |:2
x²+x-20=0
x₁=4; x₂=-5 (<0) [Корни найдены по т.Виета].
x=4 км/ч - скорость лодки от пристани до острова