Решение 1) Проведём сечение через высоту и апофему пирамиды. Это сечение представляет из себя прямоугольный треугольник, гипотенуза которого равна апофеме l, катет, лежащий в основании будет являться радиусом вписанной в шестиугольник окружности r = a√3/2, где а = √3. Второй катет является высотой пирамиды h = 2. Найдём r = (√3*√3)/2 = 3/2 = 1,5 По теореме Пифагора находим апофему пирамиды: l = √(h² + r²) = √(4 + 1,5²) = √6,25 = 2,5 ответ: 2,5 2) По условию задачи, через 5 минут после начала опыта масса изотопа стала равна 120 мг. Значит значит время от начала момента будет (t -5) мин. Решим неравенство: 120 * 2^(-(t - 5)/12) ≤ 7,5 2^(-(t - 5)/12) ≤ 7,5/120 2^(-(t - 5)/12) ≤ 0,0625 2^(-(t - 5)/12) ≤ 2⁻⁴ -(t - 5) / 12 ≤ - 4 t - 5 ≤ 4*12 t ≤ 48 + 5 t ≤ 53 (мин) ответ: t ≤ 53 (мин)
№2. y=3x²+2x-5 а)x=-2/3 => y=3*(-2/3)² + 2*(-2/3)-5 = 3*4/9 - 4/3 - 5 = 4/3 - 4/3 - 5 = -5; y=-5; б)0=3x²+2x-5 D=b²-4ac, D=2² - 4 * 3 * (-5)=64; x1=(-b-√D)/2a, x2=(-b+√D)/2a x1=(-2-8)/2*3=-5/3; x2=(-2+8)/2*3=1. x1=-5/3 (целые сам выведешь) и x2=1- нули функции. №3 К этому номеру будет фотография (а) б)при х∈(-∞;-2)∪(2;+∞); в) функция убывает при x∈[0;=∞). №4 x²-3x+2 Приравняю к нулю => x²-3x+2=0; D=b^2-4ac, D=(-3)²-4*2*1=1; x1=(-b-√D)/2a, x2=(-b+√D)/2a x1=(3-1)/2*1=1, x2=(3+1)/2*1=2 ответ: 1;2. №5 y=2(x-4)²-2 Тут даже не заморачивайся тут просто можно сразу написать, на всякий случай объясню как это работает: 1)y=ax²+n получен из y=ax² параллельным переносом вдоль оси Oy на n единиц вверх (при n>0) и на n единиц вниз (при n<0).2)y=a(x-m)² получен из y=ax² параллельным переносом вдоль оси Ox на m единиц вправо (при m>0) и на m единиц влево (при m<0). №6 Ты мне сказал не решать. №7 в-вершина, xв=-1, yв=5; y=x²+px+q; xв=-b/2a=-p/2; -p=xв*2; -p=-1*2=-2; p=2; Подставим все имеющиеся переменные в функцию y=x²+px+q: 5=(-1)²+2*(-1)+q; 5=1-2+q; 5=q-1; q=5+1=6 ответ: при p=2 и q=6 вершина параболы y = x2 + pх + q находится в точке (-1;5).
log₄/₅3 * log₃5/4= log₃3/log₃4/5 * log₃5/4 =
= 1/ (log₃4 - log₃5) * (log₃*5 - log₃4) = -1