Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
task/30647175 Решить уравнение √(3x²- 4x+15) +√(3x²- 4x+8) = 7
решение ОДЗ : x ∈ ( - ∞ ; ∞ ) , т.к.
3x²- 4x+8=3(x -2/3)²+20/3 ≥ 20/3 > 0 || D₁=2² -3*8 = -24 < 0 || следовательно и 3x²- 4x+15 = ( 3x²- 4x+8 ) + 7 > 0 * * * 3(x -2/3)² +41/3 ≥ 41/3 * * *
замена : t = 3x²- 4x+ 8 ≥ 20/3 ; √(t +7) + √t =7 ⇔√( t +7 ) = 7 - √t
возведем обе части уравнения √( t +7 ) = 7 - √t в квадрат
* * * необходимо 7 - √t ≥ 0 ⇔ √t ≤ 7 ⇔ 0 ≤ t ≤ 49 * * *
t +7 = 49 -14√t + t ⇔ 14√t = 42 ⇔ √t =3 ⇔ t = 9 || 7 - √t = 4 >0 ||
3x²- 4x+8 = 9 ⇔ 3x²- 4x -1 =0 ; D₁ = 2² -3*(-1) =7= (√7)²
x₁ =(2 -√7) / 3 ; x₂ = (2+√7)/3 .
ответ : (2 ±√7)/3 .