Масса второго сплава составляет 30 кг
Объяснение:
Для удобства вычислений переведём проценты в десятичные дроби:
5%=5:100=0,05
14%=14:100=0,14
10%=10:100=0,1
Пусть масса первого сплава равна х кг,
тогда масса второго сплава равна (х+6) кг,
а масса третьего сплава равна х+х+6=2х+6 кг
Масса цинка в первом сплаве составляет 0,05х кг,
масса цинка во втором сплаве составляет 0,14(х+6) кг,
масса цинка в третьем сплаве составляет 0,1(2х+6) кг.
Т.к. третий сплав состоит из первого и второго, составляем уравнение:
0,05х+0,14(х+6)=0,1(2х+6)
0,05х+0,14х+0,84=0,2х+0,6
0,84-0,6=0,2х-0,05х-0,14х
0,24=0,01х
х=0,24:0,01
х=24 (кг) - масса первого сплава
х+6=24+6=30(кг) - масса второго сплава
1)Р=32см; 3) Р=47 см.; 5) х=80°, у=100°
Объяснение:
к №1. Первый признак равенства треугольников: по двум сторонам и углу между ними
к №5:Если две параллельные прямые пересечены секущей, накрест лежащие углы равны
2) Рассмотрим ∠АOD и ∠СОВ- это вертикальные углы согласно правилу: "Два угла называются вертикальными, если стороны одного угла являются продолжениями сторон другого", а учитывая свойство вертикальных углов: "вертикальные углы равны" приходим к выводу, что Δ АOD и ∠СОВ-равны по двум сторонам и углу между ними.
АО=1/2d= 18/2=9см.
ОD=1/2d= 18/2=9см.
АD=СВ=13см
Р=9+9+13=31см
Произведение может быть равно 0, если нулю равны один или все множители.
Приравниваем 0 первый множитель:
3х² - 19х + 20 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-19)^2-4*3*20=361-4*3*20=361-12*20=361-240=121;Дискриминант больше 0, уравнение имеет 2 корня:
x₁=(√121-(-19))/(2*3)=(11-(-19))/(2*3)=(11+19)/(2*3)=30/(2*3)=30/6 = 5; x₂=(-√121-(-19))/(2*3)=(-11-(-19))/(2*3)=(-11+19)/(2*3)=8/(2*3)=8/6 = 4/3 ≈ 1,33333.
Приравниваем 0 второй множитель:
2cosx + 3=0,
cosx = -3/2 > |1| не имеет решения.
Корни заданного уравнения: х₁ = 5, х₂ = 4/3.
ответ: с учётом заданного промежутка [3π/2;3π], который соответствует
[4.712389; 9.424778] корень один: х₁ = 5.