ответ: cos(γ)=0,925, γ≈22°.
Объяснение:
Пусть АВ=2 см, AC=4 см и BC=5 см. Пусть α, β, γ - углы соответственно при вершинах A, B, C треугольника. Для нахождения косинусов углов используем теорему косинусов:
1. BC²=AB²+AC²-2*AB*AC*cos(α), откуда следует уравнение 25=4+16-2*2*4*cos(α), или 25=20-16*cos(α). Отсюда 16*cos(α)=-5 и cos(α)=-5/16. Тогда α=arccos(-5/16)≈108°.
2. AC²=AB²+BC²-2*AB*BC*cos(β), откуда следует уравнение 16=4+25-2*2*5*cos(β), или 16=29-20*cos(β). Отсюда 20*cos(β)=13 и cos(β)=13/20. Тогда β=arccos(13/20)≈49°.
3. AB²=AC²+BC²-2*AC*BC*cos(γ), откуда следует уравнение 4=16+25-2*4*5*cos(γ), или 4=41-40*cos(γ). Отсюда 40*cos(γ)=37 и cos(γ)=37/40. Тогда γ=arccos(37/40)≈22°
Проверка: сумма углов треугольника должна быть равна 180°. В нашем случае α+β+γ≈108°+49°+22°=179°≈180°, так что углы найдены верно.
Таким образом, наименьшим углом является γ. Его косинус равен 37/40=0,925, а его градусная величина - ≈22°.
0.16m^2 =4/25m^2=(2/5)^2m^2=(0.4m)^2
Для начала преобразуем десятичную дробь в обыкновенную:
0.16⇒16/100
Далее сокращаем дробь на 4 (Потому что и то и то делится на 4)
Делим 16 на 4 и 100 на 4. Получаем:
16/100=4/25 ⇒ Записываем 4/25 добавляя m^2 ⇒ 4/25m^2
Далее записываем число в виде степени с основанием 2/5 то-есть мы записываем 4/25 в таком виде (2/5)^2. Добавляем m^2 ⇒ (2/5)^2*m^2.
Последний шаг ⇒ перемножить члены с равными показателями путём умножения ⇒ (2/5)^2*m^2=(2/5m)^2
При делении 2 на 5 получим ⇒ 0.4. Соответственно записываем в ответ: (0.4m)^2
Или же можно решить по формуле: a^n*b^n=(ab)^n
0.16m^2 =0.4^2*m^2=(0.4m)^2
Представим 0.16 в виде 2 степени ⇒ 0.4^2
Применим формулу a^n*b^n=(ab)^n
0.4^2 это a^n а m^2 это b^n
Подставляем: 0.4^2*m^2
Умножаем: 0.4^2*m^2 и получаем (0.4m)^2