1) У числа n три различных простых делителя.
У числа 11n тоже три делителя.
Значит, один из делителей числа n равен 11.
n = 11 · х · у
2) У числа 6n ровно 4 различных простых делителя.
Учитывая, что 6 = 2 · 3
получаем:
6n = 11 · 2 · у · 3
По условию все простые делители должны быть различными.
Значит, у ≠ 2
у ≠ 3
у ≠ 11
С учетом этого наименьшим из множества простых чисел будет
число 5.
Получаем у = 5
Наименьшее число 6n = 2 · 3 · 5 · 11 = 330
3) У числа n обязательно будут делители 5 и 11, а из делителей 2 и 3 выбираем наименьший делитель 2 и получаем:
n = 2 · 5 · 11 = 110
1 + 1 + 0 = 2 - это и есть сумма цифр наименьшего числа n = 110.
ответ: 2
1) f(x)=7x-14, [0;4]
производная равна 7, 7≠0, , поэтому нет критических точек, и наибольшее и наименьшее свое значение функция принимает на концах отрезка.
f(0) = -14-наименьшее значение.
f(4) =14 наибольшее значение функции
2) f(x)= -0,2x + 0,4, [1;3]
аналогично 1) производная -0.2≠0, ищем значения функции на концах отрезка, т.е. f(1) =-0.2+0.4=0.2- наибольшее значение.
f(3) =-0.6+0.4=-0.2-наименьшее значение.
3) f(x)= 6/x, [1;6]
производная равна -6/х²≠0, не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(1) =6/1=6- наибольшее значение.
f(6) =6/6=1- наименьшее значение.
4) f(x)= -5/x, [-5;-1]
Производная равна 5/х²≠0 не существует в точке 0, но эта точка не входит и в область определения. ищем значения функции на концах отрезка, т.е. f(-1) =-5/(-1)=5- наибольшее значение.
f(-5) =-5/(-5)=1- наименьшее значение.
4a²-8a-(a²-8a+16)=4a²-8a-a²+8a-16=3a²-16, т.к. -8а и 8а сокращаются и дают в сумме ноль
p²+2p+1-4p=p²-2p+1