\[x_0=-\frac{b}{2a}=-\frac{0}{2\cdot \left(-1\right)}=0\]
Подставим найденную абсциссу в уравнение функции и найдем ее ординату:
\[y_0=-0^2+4=4\]
Итак, вершиной параболы будет точка (0; 4).
Далее нужно найти точки, которые принадлежат графику параболы. Сделать это легко. Берем несколько произвольных значений переменной х и вычисляем для них значение переменной у. Полученные пары чисел будут координатами искомых точек.
х = 1: y\left(1\right)=-1^2+4=3 —точка с координатами (1; 3).
х = 2: y\left(2\right)=-2^2+4=0 —точка с координатами (2; 0).
х = —1: y\left(-1\right)=-{\left(-1\right)}^2+4=3 —точка с координатами (—1; 3).
х = —2: y\left(-2\right)=-{\left(-2\right)}^2+4=0 —точка с координатами (—2; 0). Нанесем найденные точки на координатную плоскость и начертим график функции y = —x^2 + 4
(Рисуешь точку и проводишь линии в право ,влево ,вперед и назад.Расставляешь числа ,рисуешь дугу с самого низа до верха по второе число и спускаешься вниз)Думаю понятно объяснила.
Общий вид уравнения касательной к графику функции у = f(x) в точке х = х0 имеет вид
у = f'(x0)(x - x0) + f(x0).
Найдем уравнение производной f'(x) для функции f(x) = x^3 - 10x^2 + 1
f'(x) = 3x^2 - 10*2x + 0 = 3x^2 - 20x.
Здесь ^ - знак возведения в степень, * - знак умножения.
Найдем значение производной f'(x) в точке х = х0 = 1
f'(x0) = f'(1) = 3*1^2 - 20*1 = -17.
Найдем значение функции f(x) в точке х = х0 = 1
f(x0) = f(1) = 1^3 - 10*1^2 + 1 = -8.
Подставим в общее уравнеие касательной числовые значения f'(1), x0, f(1)
y = -17(x - 1) - 8, y = -17x + 9.
ответ: у = -17х + 9.
16х^4-40x^2+25-40x^2+50-11=0
16x^4-80x^2+64=0
Пусть х^2=t ,тогда
16t^2-80t+64=0 (сокращаем на 4)
4t^2 - 20t + 16=0
D= 400-4*4*16=400-256=144
t1= (20+12)/8=4
t2=(20-12)/8=1
x^2=4 или x^2=1
x=+2 x=+1
x=-2 x=-1