Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
Обозначим искомое число как , по условию . Перенесём единицу в левую часть и разложим разность кубов на множители:
Понятно, что , тогда обе скобки-сомножителя - натуральные числа, большие 1. С другой стороны, произведение представляется в виде двух натуральных сомножителей, больших единицы, единственным (с точностью до перестановок . Поэтому , равны либо и , либо и .
Случай 1. Из первого уравнения следует, что , тогда после подстановки во второе уравнение находим . - действительно простое число, так что нас устраивает.
Случай 2. Тут всё немного сложнее: уравнение на квадратное, а не линейное, как в первом случае. Упростив, получаем уравнение , у которого только один натуральный корень . Подставляем в первое равенство: - простое число, так что и тут нас всё устраивает.
F(x)=8x^4/4+3x-5^x/lnx+C=2x^4+3x-5^x/ln5+C