1) 7х ² - 21 = 0 /( 7х ² / 7 - 21 / 7 = 0 / 7 )
х ² - 3 = 0
х ² = 3
х = √3
х = - √3
2) 5х ² + 9х = 0
d = b ² - 4ac = 9² - 4 * 5 * 0 = 81 - 0 = 81 ;
d > 0, то квадратное уравнение имеет 2 корня
х1 = - 9 - √81 / 2 * 5 = -18/10 = -1,8
х2 = -9 + √81 / 2 * 5 = 0/10 = 0
3) х² + х - 42 = 0
d = b² - 4ac = 1² - 4 * 1 * ( - 42 ) = 1 + 168 = 169
d > 0, то квадратное уравнение имеет 2 корня
x1 = - 1 - √169 / 2 * 1 = -14/2 = -7
x2 = -1 + √169 / 2 * 1 = 12/2 = 6
4) 3x² - 28x + 9 = 0
d = b² - 4ac = 28² - 4 * 3 * 9 = 784 - 108 = 676
d > 0, то квадратное уравнение имеет 2 корня
x1 = - 28 - √676 / 2 * 3 = -54/6 = -9
x2 = - 28 + √676 / 2 * 3 = - 28 + 26 / 6 = - 2/6 =
- 1/3
5) 2x² - 8x + 11 = 0
d = b² - 4ac = (-8)² - 4 * 2 * 11 = 64 - 88 = -24
d < 0 , то уравнение не имеет корней.
6) 16х² - 8х + 1 = 0
d = b² - 4ac = (-8)² - 4 * 16 * 1 = 64 - 64 = 0
d = 0 , то квадратное уравнение имеет один корень
х = 8 / 2 * 16 = 0,25
ответ:
tg ∠ spo=sp: op=13: 2=6,5
объяснение:
нарисуем пирамиду, проведем в ней сечение мsk.
мк - средняя линия треугольника cdb, параллельна db и равна ее половине.
диагональ ас квадрата авсd равна диагонали db
ор - четверть этой диагонали и равна 8: 4=2 (из треугольника cdb, в котором высота делится отрезком мк пополам).
sр- высота, биссектриса и медиана треугольного сечения мsk.
небоходимо найти tg ∠ spo, под которым сечение пересекается с плоскостью пирамиды.
нарисуем отдельно треугольник pso.
tg ∠ spo=sp: op=13: 2=6,5
х+3 км/ч - скорость катера по течению
х-3 км/ч - против течения
5/(х-3) ч - время в пути против течения
14/(х+3) ч - в пути по течению
18/х ч - время в пути по озеру.
Время движения по реке равно времени движения по озеру.
5/(х-3)+14/(х+3)=18/х
5х(х+3)+14х(х-3)=18(х+3)(х-3)
5х²+15х+14х²-42х=18х²-162
х² - 27х+162=0
D=27² -4*162=81=+-9²
х1=(27+9)/2=18
х2=(27-9)/2=9
Оба решения подходят решению задачи.