22
Объяснение:
1. Чтобы найти наибольшее значение функции, возьмем производную от этой функции и приравняем ее к нулю (т.к. минимумы и максимумы функции находятся в точках, где производная равна 0)
y' = 3x²-5x - 2 = 0
2. Решаем это квадратное уравнение:
D = 49
x_1 =( 5 -7 ) / 6 = -1/3 (не подходит, точка не принадлежит указанному промежутку).
x_2 = (5 + 7) / 6 = 2, принадлежит промежутку.
3. Находим значение функции в точке x = 2
y (x = 2) = 2³-2.5*2²-2*2+6 = 8 - 10 - 4 + 6 = 14 - 14 = 0
4. ВНИМАНИЕ: наибольшее значение может достигаться на краях промежутка , обязательно проверяем края
y (x = 0) = 0 - 2.5 * 0 - 2* 0 + 6 = 6
y (x = 4) = 4³ - 2.5 * 4² - 2*4 + 6 = 64 - 40 - 8 + 6 = 22
Итого, самое большое значение равно 22 и достигается в точке x = 4
ответ: Одночленом - называется произведение чисел, переменных и их натуральных степеней.
Каждое из чисел 1, 7, 1 002, 0, −1, −7, 0,8, 1/4, - это одночлен. Любая переменная, к примеру, a, b, p, q, t, x, y, z – это тоже одночлены по определению. Одночленами являются и степени чисел и переменных, например, 23, (−3,41)7, x2 и t115. Но наиболее яркими представителями одночленов являются произведения чисел, переменных и их степеней: 5·x, 7·(−3)·x·y3·6, x·x·y3·x·y2·z и т.п. Из приведенных примеров видно, что в составе одночлена может быть как одно, так и несколько чисел, как одна, так и несколько переменных и их степеней, причем они могут повторяться.
Многочленом называется сумма одночленов.
Одночлены, входящие в состав многочлена, называют его членами.
Членами многочлена 4xy – 3ab являются 4xy и – 3ab .
Если многочлен состоит из двух членов, то его называют двучленом:
5xy – 7ab ; y+5b; 7a+13a.
Если из трех – трехчленом:
5x y – 7a +5 ; y+5b– 3x ; 7a+13a+5ab .
Одночлен считают многочленом, состоящим из одного члена:
2x ; 3 ; 0 ; 7xy.
D=49-4*(-5)*(-13)=49-260=-211
D<0 следовательно корней нет
ответ:0