2) x=0, y=-4 (это точки пересечение графика с осью ОУ) y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти) f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная) y'=0 2*x=0 x=0- точка экстремума. f '(x)>0 при xЭ (0; плюс бесконечности) f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности) Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума f(Xmin)=-4 7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4) тоесть, у тя сначало функция убывает до этой точки, затем возрастает. А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.
Это линейная функция графиком которой является прямая ,чтобы построить прямую достаточно знать две точки х=0 тогда у =-3·0+4= 4 (0;4)-первая точка у=-2 -2=-3х+4 -3х=-2-4 -3х--6 х=-6÷(-3) х=2 (2;-2) вторая точка отмечаеш в декартовой системе координат эти точки и через них проводиш прямую это и будет график функции если координати точки удовлетворяют уравнению -значит точка пренадлежит графику а это значит что график проходит через точку А Подставим координаты точку и проверим -130=-3·42+4 -130=-132+4 -130 ≠-128 это значит что график не проходит через точку А(42;-130)
2) x=0, y=-4 (это точки пересечение графика с осью ОУ)
y=0, x=-2;+2 (это точки пересечение графика с осью ОХ)
3) f(x)>0 при хЭ (минус бесконечности; -2) и (2; плюс бесконечнсти)
f(x)<0 при хЭ (-2;2)
4) y'=2*x (производная)
y'=0
2*x=0
x=0- точка экстремума.
f '(x)>0 при xЭ (0; плюс бесконечности)
f '(x)<0 при xЭ (минус бесконечности; 0)
5) Функция возрастает на [0; плюс бесконечности)
Функция убывает на (минус бесконечности; 0]
6) Хmin=0- точка минимума
f(Xmin)=-4
7) на графике рисуешь что-то похожее на параболу, с вершиной в точке (0;-4)
тоесть, у тя сначало функция убывает до этой точки, затем возрастает.
А точки, которые были найдены в пункте 2) это есть точки пересечения с осями, их тоже надо на графике обозначить.