Объяснение:
пусть х-скорость первого автомобиля, а у-скорость второго автомобиля Составим систему из двух уравнений. Первое уравнение 360/у-360/х=0,5 и второе 3х-3у=30 Второе сократим на 3, тогда получим х-у=10. выразим из этого уравнения х=у+10 и подставим в первое уравнение. Получим 360/у-360/(у+10)-0,5=0 Получим 720(у+10)-720у-(у+10)у=0
У^2+10y-7200=0 Найдем через дискриминант корни уравнения D=100+28800=28900=170^2
y₁=80 y₂=-90 (посторонний корень, так как скорость не может быть отрицательной) Следовательно у=80, а х=80+10=90
ответ: скорость первого автомобиля 90 км/ч, а второго 80 км/ч
Пусть скорость горной реки х
Плот плывет по реке 21 км в течение 21:х часов
Туристы на лодке все расстояние проплыли за такое же время:
54:(12+х) плыла лодка по реке + 6:12 по озеру и все это равно времени, за которое плот плывет по реке 21 км, =21:х
Составим и решим уравнение:
54:(12+х) +0,5 =21:х
Умножим обе части на х(12+х), чтобы избавиться от дробей:
54х +0,5х(12+х) =21(12+х)
54х +6х +0,5х² =252+21х
0,5х²+39х -252=0
D=b²-4ac=39²-4·0.5·-252=2025
Так как дискриминант больше нуля, то уравнение имеет два корня
Один отрицательный и не подходит ( -84)
Второй = 6
Скорость течения горной реки 6 км/ч