Функция y=f(x) возрастает на интервале X, если для любых х₁;x₂∈Х, таких, что х₂>x₁ выполняется неравенство f(x₂)>f(x₁) , что означает: большему значению аргумента соответствует большее значение функции.
Если функция определена и непрерывна в концах интервала возрастания или убывания (a;b), то есть при x=a и x=b, то эти точки включаются в промежуток возрастания или убывания. Это не противоречит определениям возрастающей и убывающей функции на промежутке X.
{x≥0
x∈[0;∞)
возведем в квадрат
18+7x=x²
x²-7x-18=0
x1+x2=7 U x1+x2=-18
x1=-2 не удов усл
x2=9