1) f(x) = x^2 - 6x + 5
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 2x - 6 = 2(x - 3)
f`(x) = 0
2(x - 3) = 0
x = 3
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; 3) і зростає якщо х ∈ (3; +∞)
2) знайдемо точки екстремума.
х(min) = 3 ⇒ y(min) = 3² - 6 * 3 +5 = 9 - 18 + 5 = -4
точки max не існеє.
2) f(x) = x^4 - 2x^2
D(f) = R
1) Знайдемо проміжки монотоності:
f`(x) = 4x³ - 4х = 4х(x² - 1) = 4х(х - 1)(х + 1)
f`(x) = 0
4х(х - 1)(х + 1) = 0
х = 0, х = 1, х = -1
(дивись малюнок)
f(x) спадає якщо х ∈ (-∞; -1) і (0; 1);
зростає якщо х ∈ (-1; 0) і (1; +∞)
2) знайдемо точки екстремума.
х(min) = -1 ⇒ y(min) = (-1)⁴ - 2 * (-1)² = 1 - 2 = -1
х(min) = 1 ⇒ y(min) = 1⁴ - 2 * 1² = 1 - 2 = -1
х(max) = 0 ⇒ y(max) = 0⁴ - 2 * 0² = 0
y=5x прямая пропорциональность, значит график должен проходить через начало координат; точка (5;25) принадлежит графику - это рисунок №2
у=1-2х - линейная функция, график должен проходить через точку (0;1), далее, k=-2, значит угол наклона к оси ОХ - тупой - это рисунок № 3
у=5-х - линейная функция, график должен проходить через точку (0;5), далее, k=-1, значит угол наклона к оси ОХ - тупой - это рисунок № 1
у=2х-7 - графика этой функции на рисунках нет (график у=2х-7 должен проходить через точку (0;-7) и т.к. k=2, угол наклона к оси - острый).
На рисунке №4 изображен график функции у=2х+7, которая отсутствует в левом столбце.
ответ 9*π см².