3sin^2(2x) + 10sin(2x) + 3 = 0.
Введем новую переменную, пусть sin(2x) = а.
Получается уравнение 3а^2 + 10а + 3 = 0.
Решаем квадратное уравнение с дискриминанта:
a = 3; b = 10; c = 3;
D = b^2 - 4ac; D = 10^2 - 4 * 3 * 3 = 100 - 36 = 64 (√D = 8);
x = (-b ± √D)/2a;
а1 = (-10 - 8)/(2 * 3) = -18/6 = -3.
а2 = (-10 + 8)/6 = -2/6 = -1/3.
Возвращаемся к замене sin(2x) = а.
1) sin(2x) = -3 (не может быть, синус любого угла больше -1, но меньше 1).
2) sin(2x) = -1/3.
Отсюда 2х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.
Делим все на 2: х = ((-1)^n * arcsin(-1/3))/2 + П/2 * n, n - целое число.
Рассмотрим два числа A и В
Пусть A=a²+b² B=c²+d² Надо доказать что A*B=x²+z²
A*B=(a²+b²)*(c²+d²)=a²c² + a²d² + b²c² + b²d² = (a²c² + b²d²) + (a²d² + b²c²) + 2*abcd - 2*abcd = *
1. * = (a²c² +2*ac*bd +b²d²) + (a²d² - 2*ad*bc+ b²c²) = (ac + bd)² + (ad - bc)²
2. *= (a²c² - 2*ac*bd +b²d²) + (a²d² + 2*ad*cd+ b²c²) = (ac - bd)² + (ad + bc)²
Таким образом нашли x₁₂ = ac + - bd и z₁₂ = ad - + bc
доказали что если каждое из двух чисел представимо в виде суммы квадратов двух натуральных чисел, то их произведение также можно разложить в сумму квадратов двух целых чисел
31*1-4*5-16*1=31-20-16=11-16=-5