Sin^4 4x + cos^2 x = 2sin4x * cos ^4 x
1\/8 (4 cos(2 x)-4 cos(8 x)+cos(16 x)+7) = 1\/8 (4 sin(2 x)+6 sin(4 x)+4 sin(6 x)+sin(8 x))
1\/2 cos^2(x) (-5 cos(2 x)+2 cos(4 x)+cos(6 x)-4 cos(8 x)+3 cos(10 x)-2 cos(12 x)+cos(14 x)+6) = 16 sin(pi\/4-x) sin(x) sin(x+pi\/4) cos^5(x)
1\/16 (e^(-4 i x)-e^(4 i x))^4+1\/4 (e^(-i x)+e^(i x))^2 = 1\/16 i (e^(-i x)+e^(i x))^4 (e^(-4 i x)-e^(4 i x))
x~~2. (3.14159 n-1.49581), n element Z
x~~2. (3.14159 n-1.43778), n element Z
x~~2. (3.14159 n+0.0749867), n element Z
x~~2. (3.14159 n+0.133013), n element Z
x~~2. (3.14159 n - (1.26876+0.0590281 i) ), n element Z
Объяснение:
1. Пусть угол 1 =х, тогда, тк 2 больше в 4 раза, а их сумма равна 180*(как внутренние односторонние ), то составим и решим уравнение, х>0:
4х+х=180
5х=180
х=36
угол 1 =36*
угол 2=144*
2.
<1=<2(как соответственные)=>
<1=<2=100*/2=50*
<1+<3=180*(КАК смежные )=>
<3=180-<1=180-50=130*
3. Пусть <1=2Х, тогда <2=7х, тк их сумма равна 180*(как смежные), то составим и решим уравнение, х>0:
7х+2х=180
9х=180
х=20
<1=40*
<2=140*
<2=<3=140*
4. (введём новый <4, вертикальный с <2)
<4=<2(как вертикальные)=> < на 90* > <1
Пусть <1=х, тогда, тк <2 > <1 на 90*, то <2=х+90, тк <2+<1=180*(как внутренние односторонние), то составим и решим уравнение :
х+90+х=180
2х=90
х=45
<1=<3=45*(как вертикальные)
1) Пусть сosx=a, тогда
3*a^2-10*a+7=0 a1,2=(10±√(10^2-4*3*7))/2*3=(10±4)/6
a1=(10-4)/6=1 , то есть cosx=1 x=2*П*n, nЄZ
a2=(10+4)/6=7/3 так как -1=<cosx=<1 7/3>1 значение не подходит.
2) Преобразуем уравнение
6*cos^2 x+7*sinx-1=0 6*cos^2 x=6-6*sin^2x заменяем
6-6*sin^2 x+7*sinx-1=0 -6*sin^2 x+7*sinx+5=0
Пусть sinx=a -6*a^2+7*a+5=0 a1,2=(-7±√(7^2-4*(-6)*5))/2*(-6)=
=(-7±13)/-12
a1=(-7-13)/(-12)=20/12=5/3 не подходит
а2=(-7+13)/(-12)=6/(-12)=-1/2 sinx=-1/2 x=(-1)^n*7*П/6+П*n, nЄZ
3) 3*сos^2 x+5*sinx+5=0 3*cos^2 x=3-3*sin^2 x
3-3*sin^2 x+5*sinx+5=0 (*(-1)) 3*sin^2 x-5*sinx-8=0
Пусть sinx=a
3*a^2-5*a-8=0 a1,2=(5±√(5^2+4*3*8))/2*3=(5±11)/6
a1=(5-11)/6=-1 sinx=-1 x=-П/2+2*П*k, kЄZ
a2=(5+11)/6=16/6=8/3>1 не подходит
4) Пусть cosx=a 12*a^2-20*a+7=0 a1,2=(20±√(20^2-4*12*7))/2*12=
=(20±8)/24
a1=(20-8)/24=12/24=1/2 cosx=1/2 x=П/3+2*П*k, kЄZ
a2=(20+8)/23=28/24>1 не подходит
5) 5*сos^ x-12*sinx-12=0 5cos^2 x=5-5*sin^2 x
5-5*sin^2x-12*sinx-12=0 (*(-1) 5*sin^2 x+12*sinx+7=0
Пусть sinx=a 5*a^2+12*a+7=0 a1,2=(-12±√(12^2-4*5*7))/2*5=(-12±2)/10
a1=(12-2)/10=1 sinx=1 x=П/2+2*П*k, kЄZ
a2=(12+2)/10=14/10>1 не подходит