По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
2 белых, 3 красных, 6 чёрных шаров - всего в сумме 11 шаров
Пусть событиеА - вынут белый шар, событие В - красный шар. Интересующее нас событие С - вынуты 1 белый и 1 красный шар.
Число всех возможных случаев при выборке 2-х шаров из 11 равно числу сочетаний из 11 элементов по 2:
n=C211= 11!/(11-2)!2! = 11!/9!*2! =
= 1*2*3*4*5*6*7*8*9*10*11 / 1*2*3*4*5*6*7*8*9*2 = 10*11 / 2 = 110/2 = 55
Число случаев, благоприятствующих событию А равно
C12 =2!/1 = 2
Число случаев, благоприятствующих событию В равно
C13 =3!/2!*1 = 3
вероятность вынуть 1 белый и 1 красный шар равна
C12 * C13 / C211 = 2*3 / 55 = 6/55
ОТВЕТ: 6/55.
2Sin7x Cos2x - 5Cos2x = 0
Cos2x(2Sin7x -5) = 0
Cos2x = 0 или 2Sin7x -5 = 0
2x = π/2 + πk , k ∈ Z Sin7x = 5/2
x = π/4 + πk/2 , k ∈ Z ∅