Совокупность всех первообразных F(x) + C функции f(x) на рассматриваемом промежутке называется неопределенным интегралом и обозначается ∫f(x)dx, где f(x) — подынтегральная функция, f(x)dx — подынтегральное выражение, х – переменная интегрирования.
Найти неопределенный интеграл:
1. ∫(x2 + x – 1)dx.
2014-10-28_094604
2. ∫ (sinx – 3cosx)dx.
A) cosx-3sinx+C; B) –cosx+3sinx+C; C) -cosx-3sinx+C; D) cosx+3sinx+C; E) -cosx-sinx.
2014-10-28_094830
A) tgx-ctgx+C; B) tgx+ctgx+C; C) ctgx-tgx+C; D) tg2x+ctg2x+C; E) tg2x-ctg2x+C.
Решение на фото: Алгоритм нахождения экстремумов: функции(наибольшее и наименьшее значение функции) •Находим производную функции Приравниваем эту производную к нулю Находим значения переменной получившегося выражения (значения переменной, при которых производная преобразуется в ноль) Разбиваем этими значениями координатную прямую на промежутки (при этом не нужно забывать о точках разрыва, которые также надо наносить на прямую), все эти точки называются точками «подозрительными» на экстремум Вычисляем, на каких из этих промежутков производная будет положительной, а на каких – отрицательной. Для этого нужно подставить значение из промежутка в производную.