Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
Нужно использовать неравенство треугольника: треугольник существует, если любая сторона меньше суммы двух других сторон: АВ<АС+СВ, AC<AB+BC, BC<AB+AC. 1) 15; 25; 10: 15<25+10, 15<35; 25<15+10, 25<25 - неверное неравенство, значит такой треугольник нельзя построить. 2) 33; 19; 12: 33<19+12, 33<31 - неверное неравенство, значит такой треугольник нельзя построить. 3) 14; 37; 45: 14<37+45, 14<82; 37<14+45, 37<59; 45<14+37, 45<51 - такой треугольник можно построить. У треугольника против большей стороны лежит больший угол, а против меньшей стороны - меньший угол, значит, напротив стороны 45 будет лежать больший угол, а напротив стороны 14 - меньший угол.