1)2х²+4х-10=0 Делим всё на 2. x²+2x-5=0. квадратное уравнение вида ax²+bx+c=0,a=1,b=2, c=-5 D=b²-4ac=2²-4·1·(-5)=4+20=24. √D=√24=2√6 x₁=(-b+√D)/2a=(-2+2√6)/2=2(√6-1)/2=(√6-1)/1=√6-1 x₂=(-b-√D)/2a=(-2-2√6)/2=-2(√6+1)/2=-(√6+1), где x₁=√6-1 и x₂=-(√6+1) корни уравнения. Теперь находим произведение корней уравнения: x₁·x₂=(√6-1)·(-1)·(√6+1)=(√6²-1²)·(-1)=-(6-1)=-5 2) [(3/(x-3)-(3/x)]·x+3/9=[[3x-3(x-3)]·x]/(x-3)·x +3/9=раскрываем скобки и сокращаем=[3x-3x+9]/(x-3)·x +3/9=9/(x-3)+3/9=первую дробь умножаем на 9, вторую умножаем на (x-3) =(81+3x²-9x)/(x-3)x=(81+3x-9)/(x-3)= =(72-3x)/(x-3)=3(24-x)/(x-3) 3) 4√0.0016-(1/2)√0.04=4·√(0.04)²-(1/2)·√(0.2)²=4·0.04-0.2÷2=0.16-0.1=0.06
Пусть х – число этажей, у – квартир, z –подъездов. х*y*z=231 Разложим число 231 на множители: 3*7*11=231 По условиям задачи количество квартир на каждом этаже больше 2, но меньше 7, т.е. 2> у <7 Отсюда видно, что число квартир равное 7 или 11 не подходит, т.к. не будет выполняться неравенство. Неравенство выполняется, если количество квартир на этаже равно 3: 2> 3 <7 (Значит 7 и 11 квартир быть не может). Количество квартир у =3
Пусть число этажей z=7 (11 подъездов), тогда количество квартир в подъезде составляет 3*7=21 первый подъезд имеет счет квартир: с 1 по 21 второй подъезд: с 22 по 42 Не подходит, т.к. не выполняется условие задачи: во втором подъезде есть квартира номер которой больше 42. Если число этажей 7, а число квартир 3, тогда максимальный номер квартиры во втором подъезде 42.
Возьмем количество этажей равным z=11, тогда количество квартир в подъезде 11*3=33 1 подъезд: с 1 по 33 номер 2 подъезд: с 34 по 66 номер (больше 42). Выполнены все условия задачи. Значит, в доме 11 этажей, 7 подъездов и 3 квартиры на каждом этаже. ответ: 11 этажей.