Если дано выражение, то не может быть разных ответов - ответ один давайте его искать Только вспомним две вещи ( если проходили модуль - то модуль всегда больше равен 0) и квадратный корень четной степени тоже всегда больше равен 0 √(17-4√(9+4√5)) - √5 = √(17-4√(2²+2*2√5+√5²)) - √5 = √(17-4√(2+√5)²) - √5 = √(17-4(2+√5)) - √5=√(17 - 8 - 4√5) - √5 = √(9 - 4√5) - √5 = √(√5² - 2*2*√5+2²) - √5 = √(√5-2)² - √5 =(√5 - 2) - √5 = - 2 пояснение √a² = |a| (модуль) √(√5-2)² = | √(√5-2)²| = (√5>2) = (√5 - 2)
Функция убывает на некотором промежутке, если её производная на этом промежутке положительна и убывает, если отрицательна. Наши действия: 1) ищем прозводную. 2) приравниваем её к нулю, ищем её корни, ставим их на числовой прямой.3) проверяем знаки производной на каждом участке. пишем ответ Начали, 1) у' = х³ +х² - 2х 2) х³ +х² -2х = 0 х( х² + х -2) = 0 х=0 или х² +х -2 =0 по т. Виета х = -2 и 1 -∞ -2 0 1 +∞ - + - + ответ: у = x^4/4+x^3/3-x^2+5 убывает при х∈(-∞;-2);(0;1) у= x^4/4+x^3/3-x^2+5 возрастает при х∈(-2;0);(1;+∞)
Главная задача --- разложить многочлен на множители... сделать это можно разными в 7 классе изучали группировки слагаемых)) в 9 классе уже научились находить корни многочлена))) корни многочлена ---это делители свободного члена: +-1, +-2, +-5, +-10 ((здесь можно вспомнить теорему Виета))) подставляем и УСТНО считаем, когда получится ноль --- корень найден... очевидно а₁ = -2 теперь можно разделить многочлен столбиком на (а + 2) а³ + a + 10 = (a + 2)*(a² - 2a + 5) = 0 ну а корни квадратного трехчлена научились находить в 8 классе))) D=4-20 < 0 корней нет... ответ: а = -2
давайте его искать
Только вспомним две вещи ( если проходили модуль - то модуль всегда больше равен 0) и квадратный корень четной степени тоже всегда больше равен 0
√(17-4√(9+4√5)) - √5 = √(17-4√(2²+2*2√5+√5²)) - √5 = √(17-4√(2+√5)²) - √5 = √(17-4(2+√5)) - √5=√(17 - 8 - 4√5) - √5 = √(9 - 4√5) - √5 = √(√5² - 2*2*√5+2²) - √5 = √(√5-2)² - √5 =(√5 - 2) - √5 = - 2
пояснение
√a² = |a| (модуль)
√(√5-2)² = | √(√5-2)²| = (√5>2) = (√5 - 2)