Еще одна популярная задача теории вероятностей (наравне с задачей о подбрасывании монет) - задача о подбрасывании игральных костей.
Обычно задача звучит так: бросается одна или несколько игральных костей (обычно 2, реже 3). Необходимо найти вероятность того, что число очков равно 4, или сумма очков равна 10, или произведение числа очков делится на 2, или числа очков отличаются на 3 и так далее.
Основной метод решения подобных задач - использование формулы классической вероятности, который мы и разберем на примерах ниже.
Ознакомившись с методами решения, вы сможете скачать супер-полезный Excel-файл для расчета вероятности при бросании 2 игральных костей (с таблицами и примерами).
Объяснение:
если не по теме то не баньте
Два пешехода должны выйти навстречу друг другу из двух пунктов, расстояние между которыми 20 км. Если первый выйдет на полчаса раньше второго, то он встретит второго пешехода через 2,5 ч после своего выхода. Если второй выйдет на 1 ч раньше первого, то он встретит первого пешехода через 2 ч 40 мин после своего выхода. Какова скорость первого пешехода (в км/ч)?
пусть х скорость первого (ее надо найти), у скорость второго
имеем систему
2.5x+2y=20 // так как первый шел 2,5 часа и вышел на полчаса раньше, то второй шел 2 часа
5x/3+8y/3=20 // так как второй шел 2 ч 40 мин и вышел на часраньше, то первый шел 1 ч 40 мин
5x+4y=40
5x+8y=60
4y=20
y=5
2.5x+2*5=20
2.5x=10
x=4
ответ: 4 и 5
p=0.3*0.6+0.32*0,25+0.38*0.5=0.45
Имеем Биномиальное распределение , которое при больших n стремится к нормальному с математическим ожиданием
M=np=300*0.45=135
Дисперсией D=npq=300*0.45*0.55=74.25
и отклонением σ=√D=8.62
Справа (170-135)/σ=4.06 стандартных отклонения - вероятность 0.5
Слева (135-130)/σ = 0.58 стандартных отклонения - смотрим по таблице нормального распределения - вероятность 0.219
Общая вероятность интервала (130-170) - 0.719