В решении.
Объяснение:
2) -24у² + (8 - у)³ + у³ <=0
В скобках куб разности, разложить по формуле:
-24у² + 512 - 192у + 24у² - у³ + у³ <= 0
После сокращений:
512 - 192у <= 0
-192y <= - 512
192y >= 512 (знак неравенства меняется при делении на -1)
у >= 512/192
y >= 8/3
Решение неравенства у∈[8/3; +∞).
На числовом луче штриховка от 8/3 ( 2 и 2/3) вправо до + бесконечности.
Кружок возле 8/3 закрашенный, значение входит в решения неравенства.
4) у³ - 27у² - (у - 9)³ > 0
В скобках куб разности, разложить по формуле:
у³ - 27у² - (у³ - 27у² + 243у - 729) > 0
Раскрыть скобки:
у³ - 27у² - у³ + 27у² - 243у + 729 > 0
После сокращений:
- 243у + 729 > 0
-243у > -729
243у < 729 (знак неравенства меняется при делении на -1)
у < 729/243
y < 3
Решение неравенства у∈(-∞; 3).
На числовом луче штриховка от - бесконечности вправо до 3.
Кружок возле 3 не закрашенный, значение не входит в решения неравенства.
1) 4x + 6y = a
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение числа –2 и 4, должно получиться верное равенство.
В паре чисел на первом месте стоит х, на втором у
(х; у)
Тогда в уравнение подставляем х = –2; у = 4
4∙(–2) + 6∙4 = a
–8 + 24 = а
16 = а
4x + 6y = 16
при а = 16 пара чисел (–2; 4) является решением уравнения.
2) ax – 5y = 8
Выполним то же самое, как и в предыдущем примере.
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение
–2 и 4, должно получиться верное равенство.
Тогда в уравнение подставляем х = –2; у = 4
a∙(–2) – 5∙4 = 8
–2а – 20 = 8
–2а = 8 + 20
2а = –28
а = –14
–14x – 5y = 8
при а = –14 пара чисел (–2; 4) является решением.
f'(x) = ((3x + 1)'(x - 2) - (3x + 1)(x - 2)')/(x - 2)² = (3(x - 2) - (3x + 1))/(x - 2)² = (3x - 6 - 3x - 1)/(x - 2)² = -7/(x - 2)²
f(x₀) = (3·3 + 1)/(3 - 2) = 10/1 = 10
f'(x₀) = -7/(3 - 2)² = -7/1 = -7
y = f(x₀) + f'(x₀)(x - x₀)
y = 10 + -7(x - 3)
y = 10 - 7x + 21
y = -7x + 31
С осью Oy график функции пересекается при x = 0:
y(0) = 0 + 31 = 31
ответ: y = 31.