Если даны два уравнения первой степени в системе с двумя неизвестными и все коэффициенты при переменных не пропорциональны между собой, то система имеет единственное решения и геометрический смысл в том, что прямые пересекаются ( в данном случае) Например: Система: 2х+у=5 х+у=2
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты и свободное число одного уравнения получаются делением или умножением соответствующих коэффициентов и свободного числа другого уравнения, то система имеет бесконечно много решений и геометрический смысл в том, что прямые совпадают ( в данном случае) Например: Система: 2х+у=5 4х+2у=10
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты одного уравнения получаются делением или умножением соответствующих коэффициентов другого уравнения, а свободные числа нет, то система не имеет решений (пустое множество решений) и геометрический смысл в том, что прямые параллельны ( в данном случае) Например: Система: 2х+у=5 4х+2у=7
Если даны два уравнения первой степени в системе с двумя неизвестными и все коэффициенты при переменных не пропорциональны между собой, то система имеет единственное решения и геометрический смысл в том, что прямые пересекаются ( в данном случае) Например: Система: 2х+у=5 х+у=2
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты и свободное число одного уравнения получаются делением или умножением соответствующих коэффициентов и свободного числа другого уравнения, то система имеет бесконечно много решений и геометрический смысл в том, что прямые совпадают ( в данном случае) Например: Система: 2х+у=5 4х+2у=10
Если даны два уравнения первой степени в системе с двумя неизвестными и коэффициенты одного уравнения получаются делением или умножением соответствующих коэффициентов другого уравнения, а свободные числа нет, то система не имеет решений (пустое множество решений) и геометрический смысл в том, что прямые параллельны ( в данном случае) Например: Система: 2х+у=5 4х+2у=7
Объяснение:
(x^2+5x)(x^2+5x-8)-20=0
x^2+5x=t
t(t-8)-20=0
t^2-8t-20=0
D=64+4*20=12^2
t1/2=8+-12/2=10/-2
x^2+5x=10
x^2+5x-10=0
D=25+4*10=65
x1/2=-5+-√65/2
x^2+5x+2=0
d=25-4*2=17
x3/4=-5+-√17/2