Функция линейная, если наивысшая степень при переменной равна 1, то есть представима в виде u = a*t + b Поэтому, если нам удастся представить нашу функцию в таком виде, значит нам удастся доказать линейность предложенной функции. Разложим числитель и знаменатель предложенной функции на элементарные множители t^4 - 8*t^2 + 16 = (t^2 - 4)^2 = (t-2)*(t-2)*(t+2)*(t+2) (t+2)*(t^2-4) = (t+2)*(t+2)*(t-2) Таким образом, наша функция имеет вид u=(t-2)*(t-2)*(t+2)*(t+2)/(t+2)*(t+2)*(t-2). А вот теперь ЕСЛИ сомножитель в знаменателе ОТЛИЧЕН ОТ НУЛЯ, на него можно сократить, после сокращения получим u=t-2 то есть в самом деле функция линейная, при этом а=1, b=-2. ОДНАКО, она линейная ТОЛЬКО если действительно наше предположение, то есть при условии t#+-2(при этих значениях некоторые сомножители знаменателя обращаются в 0, а на 0 делить нельзя!). Таким образом ответ u=t-2 , область определения t#+-2
Гораздо интереснее ответить на вопрос А что же с функцией происходит в этих особых точках? В нашем случае всё замечательно, значения исходной функции в этих точках НЕ СУЩЕСТВУЕТ, ОДНАКО пределы как слева, так и справа существуют и равны друг другу. То есть функция практически непрерывная и гладкая, такие функции можно ДОПОЛНИТЬ двумя точками(значения пределов) и функция становится совсем линейной. в нашем случае можно ДОПОЛНИТЬ таким образом u(-2)=-4 u(2)= 0 но это уже совсем другая история и к решению нашей исходной задачи, вообще говоря, не имеет никакого отношения.
Доказать можно методом математической индукции... только есть нюанс -числа целые (а не натуральные))) 1) для четного целого n утверждение очевидно: n = 2k, k∈Z (2k)² - 5(2k) + 2 = 2*(2k² - 5k + 1) 2) для НЕчетного целого n: n = 2k+1, k∈Z (2k+1)² - 5(2k+1) + 2 = 4k² + 4k + 1 - 10k - 5 + 2 = 2*(2k² - 3k - 1)
для чисел, кратных трем, будет на один вариант больше представлений: n = 3k (число кратно трем) n = 3k+1 (число НЕ кратно трем --дает остаток 1) n = 3k+2 (число НЕ кратно трем --дает остаток 2) 1) (3k)³ + 2(3k) - 3 = 3*(9k³ + 2k - 1) 2) (3k+1)³ + 2(3k+1) - 3 = 27k³ + 27k² + 9k + 1 + 6k + 2 - 3 = = 3*(9k³ + 9k² + 3k) 3) (3k+2)³ + 2(3k+2) - 3 = 27k³ + 54k² + 36k + 8 + 6k + 4 - 3 = = 3*(9k³ + 18k² + 14k + 3)
можно было доказывать и в первом и во втором случае кратность только для первых двух слагаемых, т.к. третьи слагаемые в обоих случаях кратны заданным числам... чуть короче бы получилось...
а=0,5; b=1,2; с= -6,5
D = b²-4ac = 1,2²-4*0,5*(-6,5) = 1,44+13 = 14,44
√D = √14,44 = 3,8
х₁ = (-b-√D)/2a = (-1,2-3,8)/(2*0,5) = -5/1 = -5
х₂ = (-b+√D)/2a = (-1,2+3,8)/(2*0,5) = 2,6/1 = 2,6