Поскольку график данной функции проходит через точку М(3; -1/11), то имеем: -1/11 = 1/(-9 + 3а - 4); -1/11 = 1/(-13 + 3а); -13 + 3а = -11; 3а = 2; а = 2/3.
у = 1/(-х² + (2/3)х - 4)
Наименьшее значение этой функции совпадает с наибольшим значением функции f(x) = -х² + (2/3)х - 4 (наибольшим значением знаменателя), которое равно значению ординаты вершины прараболы f(x) = -х² + (2/3)х - 4.
х₀ = -b/(2a) = -(2/3)/(-2) = 1/3 - абсциса вершины, f(1/3) = -1/9 + 2/9 - 4 = -35/9 - ордината вершины.
Значит y = 1/(-35/9) = -9/35 - наименьшее значение данной функции.
ответ: -9/35.
2)cos124°=cos(90+34)=-sin34
3)sin242°=sin(270-28)=-cos28
4)cos196°=cos(180+16)=-cos16
5)sin175°=sin(180-5)=sin5
6)cos 235°=cos(270-35)=-cos35
7)tg 111°=tg(90+21)=-ctg21
8) ctg 215°=ctg(180+35)=ctg35
9)sin 312°=sin(270+42)=-cos42
10) cos 166°=cos(180-14)=-cos14
11)sin 290°=sin(270+20)=-cos20
12)ctg 163°=ctg(180-17)=-ctg17
13) tg 286°=tg(270+16)=-ctg16
14)cos 326°=cos(360-34)=cos34
15)sin 221°=sin(180+41)=-sin41
16) cos 306°=cos(270+36)=sin36
17) tg 187°=tg(180+7)=tg7
18) ctg 319°=ctg(360-41)=-ctg41