1) ab(b - a ) ≤ a³ - b³, a ≥ b ab(b - a) ≤ (a - b)(a² + ab + b²) Если a ≥ b, тогда a - b > 0, поэтому почленное деление неравенства на a - b не меняет его знака: -ab ≤ a² + ab + b² (a + b)² ≥ 0, так как квадрат любого выражения - неотрицательное число
2) Помножим почленно неравенство на 6: 3(a - 1) - 2(a - 2) > 3 3a - 3 - 2a + 4 > 3 a + 1 > 3 a > 2 Неравенство действительно выполняется при a > 2.
1. Нет например x=0, y=1 2.Из условия x0=-a=2, отсюда a=-2, y=x^2-4x+3, подставляем (3;0), получаем 0=9-12+3=0 значит ответ да 3. Ну по идее нужно обнулить икс, поэтому 2x-1>0, x-1<0, x-2<0, получаем x>1/2, x<1, x<2, то есть если a=2 у нас все числа от 1/2 до 1 являются корнями. ответ да 4.Рассмотрим x^3-ax-1=0. x=0 не является корнем ни при каком a, значит это уравнение равносильно исходному. Если у кубического многочлена 2 действительных корня, то обязательно один из них кратный (потому что комлексных корней у многочлена четное количество), отсюда x^3-ax-1=(x-p)^2(x-t). Раскрываем скобки приравниваем соответствующие коэффициенты друг другу получаем что , при этом корни p и t не совпадают, значит такое a подходит. ответ да
ab(b - a ) ≤ a³ - b³, a ≥ b
ab(b - a) ≤ (a - b)(a² + ab + b²)
Если a ≥ b, тогда a - b > 0, поэтому почленное деление неравенства на a - b не меняет его знака:
-ab ≤ a² + ab + b²
(a + b)² ≥ 0, так как квадрат любого выражения - неотрицательное число
2)
Помножим почленно неравенство на 6:
3(a - 1) - 2(a - 2) > 3
3a - 3 - 2a + 4 > 3
a + 1 > 3
a > 2
Неравенство действительно выполняется при a > 2.