Решаем уравнение х ( х² - 64 ) = 0 Произведение двух множителей равно нулю, когда хотя бы один из множителей равен нулю: х = 0 или х² - 64 =0 (х-8)(х+8)=0 х - 8 = 0 или х + 8 = 0 х = 8 или х = - 8 Отмечаем точки х=0 х = 8 и х = - 8 на числовой прямой и находим знаки функции у = х( х²- 64) на каждом промежутке. Можно найти на одном промежутке и потом знаки будут чередоваться. f ( 10) = 10·(10²- 64)>0 - + - + (-8)(0)(8) ответ. х∈ (-∞; - 8) U (0; 8)
y' = (0,5sin2x - sinx)' = 2·0,5cos2x - cosx = cos2x - cosx
Производная всюду существует, поэтому приравняем её к нулю:
cos2x - cosx = 0
2cos²x - cosx - 1 = 0
2cos²x - 2cosx + cosx - 1 = 0
2cosx(cosx - 1) + (cosx - 1) = 0
(2cosx - 1)(cosx - 1) = 0
1) 2cosx - 1 = 0
2cosx = 1
cosx = 1/2
x = ±π/3 + 2πn, n ∈ Z
2) cosx - 1 = 0
cosx = 1
x = 2πk, k ∈ Z
ответ: -π/3 + 2πn; π/3 + 2πn, n ∈ Z, 2πk, k ∈ Z.