1 задание 2х+6-1+х=0 3х+5=0 3х=-5 х=-5/3 ответ:(-5/3;+ бесконечности) б) х^2-4х+3. можно решать через дискриминант, можно через теорему Виетта: х1+х2=4 х1*х2=3 тогда х1=3,х2=1 Чертим ось, и чертим закрашенные точки 1 и 3. тогда методом интервалов, положительные значения будут в (-бесконечности; 1] [3;+бесконечности) 2 задание. а) возведу в квардат х+х^2-2=0 по теореме виетта: х1+х2=-1 х1*х2=-2 тогда ответ х1=-2 х2=1 б) возведу снова в квадрат 2х+8-х^2=0 умножим на -1 и тогда х^2-2х-8=0 по теореме виетта; х1+х2=2 х1*х2=-8 тогда ответ х1=4 х2=-2 3 задание. т. к. условие корень, значит область опредения будет вычисляться так. 2-5х>=0 -5х=-2 х=0,4 чертим числовую прямую и ставим закрашенную точку 0,4. тогда методом интервалов ответ (-бесконечности; 0.4]
Допустим,нам даны прямые a и b ,пересекающиеся в некоторой точке,и окружность с центром в точке О,заключённая между ними. Основываясь на том теореме,что каждая точка биссектрисы неразвёрнутого угла равноудалена от его сторон. Строим биссектрису угла ,образованного прямыми a и b (план построения биссектрисы с циркуля и линейки оставлю в одном из вложений). Возможен случай,когда биссектриса не пересекает данную окружность,тогда равноудалённых от прямых точек ,лежащих на окружности,нет.(третий чертёж на первой фотографии) Возможен случай,когда биссектриса касается окружности; в данном случае окружность имеет ОДНУ равноудалённую от прямых точку,поскольку она лежит на биссектрисе угла образованного прямыми.(второй чертёж на первой фотографии; искомая точка жирно выделена) Возможен случай,когда биссектриса пересекает окружность; в данном случае окружность будет иметь ДВЕ равноудалённые от прямых точки,поскольку они они лежат на биссектрисе угла,образованного прямыми.(первый чертёж на первой фотографии; точки также жирно выделены)
10*2^3=80
так пойдет