1. По Виету х=4; х=-3, т.к. 4-3=1, 4*(-3)=-12
ответ 4; -3.
2. 1) Дискриминант равен 1-4*(-6)*12=1+24*12>0, значит, квадратный трехчлен имеет корни. Разложить можно.
ответ да.
2)Дискриминант равен 64-4*3*6=64-72=-8<0, значит, корней у кв. трехчлена нет. Разложить нельзя.
ответ нет.
3.-нет вопроса.
4.
0.4х²-2х+25, верным ответом является первый, т.к. 0,4( х – 2,5)²=
0.4*(х²-2х+6.25)=0.4х²-2х+2.5
5. х=(5±√(25+24))/12=(5±7)12;х=1; х=-1/6
Разложение 6*(х-1)*(х+1/6)=(6х + 1)(х – 1)- третий ответ верный
6.- нет вопроса.
Объяснение:
1) разложим числитель и знаменатель на множители. Из числителя вынесем 8 как общий множитель, в знаменателе воспользуемся формулой сокращённого умножения a^2-b^2 = (a-b)(a+b). Тогда будет 8*(x+4)/((x-4)(x+4)) => 8/(x-4) учитывая что x≠-4
2) 1) 7a/(b-3) и b/((b-3)(b+3)) => 7a*(b+3)/((b-3)(b+3)) и b/((b-3)(b+3))
Под 2) 1/(х-3)^2 и 1/((х-3)(х+3)) => (х+3)/((х-3)^2)*(х+3)) и (х-3)/((х-3)^2)*(х+3))
Номер 3)
1) t^2/(3*(t-2)) + 4/(3*(2-t)) => t^2/(3*(t-2)) — 4/(3*(t-2)) => (t^2-4)/(3*(t-2)) => (t+2)/3 с учётом t≠-2
2) a^2/((a-8)(a+8)) - a/(a+8) => (a^2-a*(a-8))/((a-8)(a+8)) => 8a/((a-8)(a+8))
3x+x=324
4x=324
x=324:4
x=81 (на втором складе)
3•81=243 (на первом складе)
ответ: 243 тонны на первом складе,81 тонна на втором складе.