М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ivan488
ivan488
31.10.2020 13:38 •  Алгебра

Разложите на множители a⁴+4a³-6a² , 3a+20xb-3b-20xa и x²-y²-5x-5y

👇
Ответ:
yoongi2017
yoongi2017
31.10.2020
A⁴+4a³-6a² = a²(a²+4a-6)

x²-y²-5x-5y=(x-y)(x+y)-5(x+y)=(x+y)((x-y)-5)=(x+y)(x-y-5)

3a+20xb-3b-20xa =3a-3b -20xa+20xb= 3(a-b)-20x(a-b)=(3-20x)(a-b)
4,8(31 оценок)
Открыть все ответы
Ответ:
2зик20
2зик20
31.10.2020

1)Решение системы уравнений (2; 3)

  Система уравнений имеет одно решение.

2)Система уравнений имеет бесчисленное множество решений.

3)Система уравнений не имеет решений.

Объяснение:

1)2х-7у= -17

 5х+у=13

Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:

у=13-5х

2х-7(13-5х)= -17

2х-91+35х= -17

37х= -17+91

37х=74

х=74/37

х=2

у=13-5х

у=13-5*2

у=3

Решение системы уравнений (2; 3)

Система уравнений имеет одно решение.

Графически:

 2х-7у= -17

 5х+у=13

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде преобразуем уравнения в более удобный для вычислений вид:  

              2х-7у= -17                                             5х+у=13

              -7у= -17-2х                                            у=13-5х

              7у=17+2х

              у=(17+2х)/7

                                          Таблицы:

           х    -5    2    9                                       х    -1     0     1

           у     1     3     5                                       у    18   13    8

Координаты точки пересечения прямых (2; 3)

Решение системы уравнений (2; 3)

Система уравнений имеет одно решение.

2)х+2у=5

-2х-4у= -10

Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:

х=5-2у

-2(5-2у)-4у= -10

-10+4у-4у= -10

4у-4у= -10+10

0=0

Система уравнений имеет бесчисленное множество решений.

Графически:

х+2у=5

-2х-4у= -10

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде преобразуем уравнения в более удобный для вычислений вид:  

                      х+2у=5                                    -2х-4у= -10

                      2у=5-х                                      -4у= -10+2х

                      у=(5-х)/2                                    4у=10-2х

                                                                         у=(10-2х)/4

                                              Таблицы:

                   х    -1    0    1                                х    -1    0    1

                   у     3    2   1                                 у     3    2   1

Графики функций полностью совпадают, "сливаются".

Система уравнений имеет бесчисленное множество решений.

3)3х-у=2

  3х-у=3

Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:

-у=2-3х

у=3х-2

3х-(3х-2)=3

3х-3х+2=3

2=3

Система уравнений не имеет решений.

Графически:

  3х-у=2

  3х-у=3

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде преобразуем уравнения в более удобный для вычислений вид:  

                      3х-у=2                                          3х-у=3

                      -у=2-3х                                         у=3-3х

                       у=3х-2                                         у=3х-3

                                           Таблицы:

                   х   -1     0     1                                 х   -1     0     1

                   у   -5    -2    1                                 у   -6    -3    0

Графики функций параллельны.

Система уравнений не имеет решений.

4,6(68 оценок)
Ответ:
TATARIN001
TATARIN001
31.10.2020

1)Решение системы уравнений (2; 3)

  Система уравнений имеет одно решение.

2)Система уравнений имеет бесчисленное множество решений.

3)Система уравнений не имеет решений.

Объяснение:

1)2х-7у= -17

 5х+у=13

Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:

у=13-5х

2х-7(13-5х)= -17

2х-91+35х= -17

37х= -17+91

37х=74

х=74/37

х=2

у=13-5х

у=13-5*2

у=3

Решение системы уравнений (2; 3)

Система уравнений имеет одно решение.

Графически:

 2х-7у= -17

 5х+у=13

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде преобразуем уравнения в более удобный для вычислений вид:  

              2х-7у= -17                                             5х+у=13

              -7у= -17-2х                                            у=13-5х

              7у=17+2х

              у=(17+2х)/7

                                          Таблицы:

           х    -5    2    9                                       х    -1     0     1

           у     1     3     5                                       у    18   13    8

Координаты точки пересечения прямых (2; 3)

Решение системы уравнений (2; 3)

Система уравнений имеет одно решение.

2)х+2у=5

-2х-4у= -10

Выразим х через у в первом уравнении, подставим выражение во второе уравнение и вычислим у:

х=5-2у

-2(5-2у)-4у= -10

-10+4у-4у= -10

4у-4у= -10+10

0=0

Система уравнений имеет бесчисленное множество решений.

Графически:

х+2у=5

-2х-4у= -10

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде преобразуем уравнения в более удобный для вычислений вид:  

                      х+2у=5                                    -2х-4у= -10

                      2у=5-х                                      -4у= -10+2х

                      у=(5-х)/2                                    4у=10-2х

                                                                         у=(10-2х)/4

                                              Таблицы:

                   х    -1    0    1                                х    -1    0    1

                   у     3    2   1                                 у     3    2   1

Графики функций полностью совпадают, "сливаются".

Система уравнений имеет бесчисленное множество решений.

3)3х-у=2

  3х-у=3

Выразим у через х в первом уравнении, подставим выражение во второе уравнение и вычислим х:

-у=2-3х

у=3х-2

3х-(3х-2)=3

3х-3х+2=3

2=3

Система уравнений не имеет решений.

Графически:

  3х-у=2

  3х-у=3

Построить графики. Графики линейной функции, прямые линии. Придаём значения х, подставляем в уравнение, вычисляем у, записываем в таблицу. Для построения прямой достаточно двух точек, для точности построения определим три.  

Прежде преобразуем уравнения в более удобный для вычислений вид:  

                      3х-у=2                                          3х-у=3

                      -у=2-3х                                         у=3-3х

                       у=3х-2                                         у=3х-3

                                           Таблицы:

                   х   -1     0     1                                 х   -1     0     1

                   у   -5    -2    1                                 у   -6    -3    0

Графики функций параллельны.

Система уравнений не имеет решений.

4,5(10 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ