Пусть в 1 группе х студентов, а во 2 группе у студентов. { x + y > 52 { x > 2(y - 21) { y > 5(x - 16) Раскрываем скобки { x + y > 52 { x > 2y - 42 { y > 5x - 80 Перенесем числа во 2 и 3 неравенствах влево { x + y > 52 { 2y - x < 42 { 5x - y < 80 Сложим 2 и 3 неравенства. Умножаем 1 уравнение на -1 { -x - y < -52 { 4x + y < 122 Складываем неравенства 3x < 70 x < 70/3 <= 69/3 x <= 23
Если x = 23, то y > 52 - 23; y > 29, то есть y >= 30 Пусть x = 23, y = 30, проверяем по 2 и 3 неравенствам { 23 > 2(30 - 21); 23 > 18 - подходит { 30 > 5(23 - 16); 30 > 35 - не подходит. Пусть x = 23, y = 36 { 23 > 2(36 - 21); 23 > 30 - не подходит
Если x = 22, то y > 52 - 22; y > 30; y >= 31 { 22 > 2(31 - 21); 22 > 20 - подходит { 31 > 5(22 - 16); 31 > 30 - подходит ответ: x = 22; y = 31
Для решения задачи возьмем первоначальное количество яблонь на 1 участке за х. Если с 1 участка пересадить 1 яблоню на второй, то количество яблонь на первом выразим как (х – 1) яблонь. Тогда количество яблонь на 2 участке можно выразить как 3(х – 1). Известно, что всего на двух участках было 84 яблони. Составим и решим уравнение: (х – 1) + 3(х - 1) = 84 х – 1 + 3х – 3 = 84 4х = 84 + 3 + 1 = 88 х = 22 Значит 22 яблони было первоначально на первом участке. Найдем сколько было первоначально яблонь на втором участке: 84 – 22 = 62 Произведем проверку: Если от 22 яблонь на 1 участке пересадить одну на 2 участок, то там останется 21 яблоня, что будет в три раза меньше, чем станет на втором участке - 63 яблони. 21 + 63 = 84 ответ: На втором участке изначально было 62 яблони.
ответ:1. -14х+24у
Объяснение:-4(8х-9у)+3(6х-4у)=-32х+36у+18х-12у=-14х+24у