Объяснение:
1) А(-π/2 ; -1).
Здесь х= - π/2;
Для определения принадлежит ли точка А графику функции y=cos x
подставим значение х= - π/2, в формулу данной ф-ции:
y=cos x = cos (-π/2) =0. Итак при х= -π/2 , значение ф-ции у=0, а
это значит что точка А(-π/2;-1) не принадлежит графику функции
y=cos x.
2) B(9π/4; √2/2).
Объяснение аналогично варианту 1).
x= 9π/4;
Подставляем значения х в формулу данной функции:
y=cos x= cos(9π/4) = cos(2) =cos(π/4 + 2π)= cos(π/4)= √2/2;
При х =9π/4, значение функции у=√2/2, то точка В(9π/4; √2/2)
принадлежит графику функции y=cos x.
3) C(-4π;-1).
x=-4π; y=cos x= cos(-4π)=cos(-2π-2π)=cos(-2π)=cos(2π)=1;
При х= -4π, у=1.
Точка В(-4π;-1) не принадлежит графику функции y=cos x.
Объяснение:
1) А(-π/2 ; -1).
Здесь х= - π/2;
Для определения принадлежит ли точка А графику функции y=cos x
подставим значение х= - π/2, в формулу данной ф-ции:
y=cos x = cos (-π/2) =0. Итак при х= -π/2 , значение ф-ции у=0, а
это значит что точка А(-π/2;-1) не принадлежит графику функции
y=cos x.
2) B(9π/4; √2/2).
Объяснение аналогично варианту 1).
x= 9π/4;
Подставляем значения х в формулу данной функции:
y=cos x= cos(9π/4) = cos(2) =cos(π/4 + 2π)= cos(π/4)= √2/2;
При х =9π/4, значение функции у=√2/2, то точка В(9π/4; √2/2)
принадлежит графику функции y=cos x.
3) C(-4π;-1).
x=-4π; y=cos x= cos(-4π)=cos(-2π-2π)=cos(-2π)=cos(2π)=1;
При х= -4π, у=1.
Точка В(-4π;-1) не принадлежит графику функции y=cos x.
b₁ = x⁴
b₂ = x⁴/(1 + x⁴)
b₃ = x⁴/(1 + x⁴)²
b₁b₃ = b₂² - условие существования геометрической прогрессии
x⁴·x⁴/(1 + x⁴)² = x⁸/(1 + x⁴)² = [x⁴/(1 + x²)²] - верно
q = b₂/b₁ = x⁴/(1 + x⁴)/x⁴ = 1/(1 + x⁴)
Т.к. x > 1, то 0 < q < 1 ⇒ данная геометрическая прогрессия бесконечно убывающая.
S = b₁/(1 - q) = x⁴/[1 - 1/(1 + x⁴)] = x⁴/[(1 + x⁴ - 1)/(1 + x⁴)] =
x⁴(1 + x⁴)/x⁴ = 1 + x⁴ = 1 + 3⁴ = 1 + 81 = 82
ответ: y = x⁴ + 1; 82.