1. Достраиваем исходный прямоугольный треугольник до прямоугольника. 2. Проводим вторую диагональ получившегося прямоугольника. 3. Получилось четыре одинаковых прямоугольных треугольника. 4. Разбиваем прямоугольник на четыре равных прямоугольника проводя параллельные прямые через точку пересечения диагоналей. 5. Получившиеся прямоугольники имеют наибольшую площадь так как в сумме дают полную площадь прямоугольника. 6. Площадь прямоугольника 8*5=40 см². 7. Площадь вписанного прямоугольника 40/4=10 см².
Решение: Обозначим первоначальную массу олова в сплаве за (х) кг, тогда процентное содержание олова в сплаве составляет: х/16*100% При добавлении олова, масса сплава стала равной: 16+2=18(кг) а содержание олова в новом сплаве составило: (х+2) кг процентное содержание олова в новом сплаве равно: (х+2)/18*100% А так как в новом сплаве содержание олова на 5% больше чем в первоначальном сплаве, составим уравнение: (х+2)/18*100% - х/16*100%=5% 100*(х+2)/18 - 100*х/16=5 Приведём к общему знаменателю 144 8*100*(х+2) - 9*100*х=144*5 800х+1600 -900х=720 -100х=720-1600 -100х=-880 х=-880 : -100 х=8,8 (кг) -первоначальное количество олова в сплаве
ответ: Первоначальное количество олова в сплаве 8,8кг