Алгебра. Найдите сумму корней квадратного уравнения x^2-13x-7=0 Первый По теореме Виета В уравнении вида x²+px+q=0 сумма корней равна х₁+х₂=-р произведение корней равно х₁*х₂=q Отсюда х₁+ х₂=13 Второй не рациональный, верный, но трудоемкий) Дискриминант квадратного уравнения ах²+вх+с=0, определяется по формуле Д=в²-4ас=(-13)²-4*1*(-7)=169+28=197 Корни квадратного уравнения определим по формуле х₁=-в+√Д/2а=13+√197/2*1=13+√197/2 х₂=-в-√Д/2а=13-√197/2*1=13-√197/2
(x-x₀)²+(y-y₀)²=R² - уравнение окружности в общем виде (x₀;y₀) - координаты центра окружности R - радиус окружности По условию задачи, центр окружности лежит на биссектрисе первой координатной четверти, следовательно, x₀>0, y₀>0 и x₀=y₀ Тогда, подставив координаты точки, через которую проходит окружность, значение для радиуса окружности, а также, учитывая, что х₀=у₀, получим следующее уравнение: (1-x₀)²+(8-x₀)²=5² 1-2x₀+x₀²+64-16x₀+x₀²=25 2x₀²-18x₀+40=0 |:2 x₀²-9x₀+20=0 Применим теорему Виета: {x₀₁*x₀₂=20 {x₀₁+x₀₂=9 => x₀₁=4; x₀₂=5 х₀=у₀ => y₀₁=4; y₀₂=5 (4;4), (5;5) - центры искомых окружностей
Подставляем найденные координаты в общее уравнение окружности:
(х-4)²+(у-4)²=25 и (х-5)²+(у-5)²=25 - искомые уравнения окружностей