Замена:
Имеем квадратичную функцию , графиком которой является парабола с ветвями, направленными вверх.
Найдем возможные точки пересечения параболы с осью абсцисс.
Для этого решим квадратное уравнение:
Найдем дискриминант данного уравнения:
Имеем , значит данное уравнение имеет ровно 2 корня:
Имеем две точки пересечения параболы с осью абсцисс.
Пусть . Тогда . Имеем неверное неравенство. Следовательно, при всех значениях параметра имеем .
Тогда квадратичная функция будет меньше 0 при
Последнее можно записать так:
Обратная замена:
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является
Если , то имеем:
Решением такой системы неравенств является интервал
если , то нет корней;если , то если , то
Приведем к общему знаменателю:
48/120, 45/120, 80/120
По возрастанию:
45/120, 48/120, 80/120
т.е.
3/8, 0,4, 2/3