1) 1."Кидаем" одну степень в число 2.числа перемножаем ,а степени складываем 2) 1. Тоже Кидаем степени чтоб числа стали целыми 2. Делим числа и степени вычитаем. 3. Доводим до целого числа (ну и потом из степени можно нолики дописать)
Нам задана функция графиком данной функции будет гипербола, "сдвинутая" влево на 2. (см. приложенные файлы) свойства: ∪ E(f): ∪ нули функции отсутствуют, функция бесконечно стремится к нулю, но это значение НИКОГДА не достигается. промежутки знакопостоянства: принимает только отрицательные значения на интервале: только положительные на интервале: функция монотонно убывает при x>-2 и при x<-2 функция не является ни четной, ни нечетной функция непериодическая. функция не ограничена ни сверху, ни снизу. претерпевает разрыв в точке х=-2.
Применяем формулу суммы бесконечно убывающей прогрессии S=b/(1-q) b=0,024 q=0,01 Бесконечно убывающая прогрессия начинается с третьего слагаемого. 3+0,2 + 0,024+0,00024+...=3+ 0,2+(0,024/(1-0,01))=3+0,2+(0,024/0,99)= =3+0,2+(24/990)=3+(2/10)+(24/990)=3+(2·99+24)/990=3 целых 222/990
Можно по правилу 3+0,2(24)=3+(224-2)/(990) В числителе из числа 224 вычитаем число 2 ( цифра, до периода) В знаменателе пишем столько девяток, сколько цифр в периоде и приписываем столько нулей, сколько цифр до периода 99 - потому что две цифры в периоде (24) 990- потому что до начала периода одна цифра (2) О т в е т. 3,2(24)=3 целых 222/990= 3 целых 37/165
2.числа перемножаем ,а степени складываем
2) 1. Тоже Кидаем степени чтоб числа стали целыми
2. Делим числа и степени вычитаем.
3. Доводим до целого числа (ну и потом из степени можно нолики дописать)