1) Боря берет конфеты по арифметической прогрессии: 1, 3, 5, ... a1(1) = 1; d1 = 2 Миша - тоже по арифметической прогрессии a2(1) = 2; d2 = 2 Всего Боря взял S1(n) = (2a1 + d(n-1))*n/2 = (2 + 2(n-1))*n/2 = (1 + n - 1)*n = n^2 = 60 7 < n < 8 Значит, n = 7, предпоследний раз Боря взял a1(7) = 1 + 2*6 = 13. И у Бори получилось S1(7) = 7^2 = 49 конфет. Но мы знаем, что всего он взял 60 конфет. Значит, в последний раз 11. Миша последний раз взял 14. Это тоже 7-ой раз. Всего Миша взял S2(7) = (2*2 + 2*6)*7/2 = 2*8*7/2 = 56 Всего конфет было 60 + 56 = 116
2) 231 = 3*7*11 На каждом этаже квартир больше 2, но меньше 7, то есть 3. Допустим, в доме 7 этажей. Тогда в одном подъезде 3*7 = 21 квартира. Квартира номер 42 - последняя во 2 подъезде. Квартир с номерами больше 42 во 2 подъезде нет. Значит, в доме 11 этажей. Тогда в одном подъезде 3*11 = 33 квартиры. Квартира номер 42 - последняя на 3 этаже.
Док-во от противного: Если корень из двух (далее к2) рационален, значит к2 = m/n, где m и n натуральные числа причем дробь m/n несократимая. (по определению рационального числа)
возведем обе частив квадрат получаем 2 = m*m/n*n, домножаем обе части на n*n получаем 2*n*n = m*m делаем вывод, что m - четное число, а значит m = 2*m1. получаем 2*n*n = (2*m1)*(2*m1), далее 2*n*n = 4*m1*m1, значит n*n = 2*m1*m1 из этого следует что n тоже четное число.
Получиили что и n и m четные числа, значит дробь можно сократить (поделить числитель и знаменатель на 2, но это противоречит условию что дробь несократима. ПРОТИВОРЕЧИЕ. значит к2 иррационален.