М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lololiplolpjvfhsbf
Lololiplolpjvfhsbf
12.09.2020 03:50 •  Алгебра

1. уравнение функции y=x4+x41+x4+x4(1+x4)2+x4(1+x4)3+⋯ и найти ее значение, если x=3.
2. укажи номер члена последовательности yn=13−n/5n+8, равного 5/48.

умоляю

👇
Ответ:
1234555676
1234555676
12.09.2020

x^{4}+\frac{x^{4}}{1+x^{4}}+\frac{x^{4} }{(1+x^{4})^{2}}+\frac{x^{4}}{(1+x^{4})^{3}}+...}=x^{4} (1+\frac{1}{1+x^{4}}+\frac{1}{(1+x^{4})^{2}}+\frac{1}{(1+x^{4})^{3}}+...)

То что в скобках - это бесконечно убывающая геометрическая прогрессия в которой b₁ = 1 , а q = 1/(1+x⁴).

Найдём сумму этой прогрессии :

S=\frac{b_{1} }{1-q} =\frac{1}{1-\frac{1}{1+x^{4}}}=\frac{1}{\frac{1+x^{4}-1 }{1+x^{4}}}=\frac{1}{\frac{x^{4} }{1+x^{4}}}=\frac{1+x^{4} }{x^{4}}

Следовательно :

x^{4}+\frac{x^{4} }{1+x^{4}}+\frac{x^{4}}{(1+x^{4})^{2}}=\frac{x^{4} }{(1+x^{4})^{3}}+... =x^{4}*\frac{1+x^{4}}{x^{4}}=1+x^{4} \\\\x=3\\\\1+x^{4}=1+3^{4}=1+81=82\\\\Otvet:\boxed{82}

2)

y_{n}=\frac{13-n}{5n+8}\\\\y_{n}=\frac{5}{48}\\\\\frac{13-n}{5n+8}=\frac{5}{48}\\\\48(13-n)=5(5n+8)\\\\624-48n=25n+40\\\\-48n-25n=40-624\\\\-73n=-584\\\\n=8\\\\Otvet:\boxed{n=8}

4,8(46 оценок)
Открыть все ответы
Ответ:
hjhytu
hjhytu
12.09.2020

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
Ответ:
Злата1616
Злата1616
12.09.2020
Тут нужно решать интервальным методом, показать здесь я это не могу. Но для начала нужно найти нули функции(значения х, при котором функция была бы равна нулю). Здесь нули ф.: 4;-3,5. Затем чертим ось ох, обозначаем эти точки и участки, где функция положительна или отрицательна. В итоге получаем, что функция <0 при х принадлежащем отрезку (-3,5;4) 2 решается точно так же, но тут для удобства нужно в 1 скобуе поменять местами числа, затем вынести за скобки -1 и умножить обе части неравенства на -1(при этом знак> меняется на знак <). Вот что получается (х-2)(х+1)<0. Нули функции: 2;-1. Дальше как я уже объяснял выше. ответ: при х принадлежащем отрезку (-1;2)
4,8(72 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ