М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yagunovaliza
yagunovaliza
28.04.2020 22:37 •  Алгебра

Добрый день! , объясните что значит знак похожий на букву э называется принадлежность и непринодлежность. в интернете нет подробного объяснение. можно подробно объяснить с примером: ) вот например у меня такие примеры 1) 5 9, 5 2) 6, 4 64

👇
Ответ:
vadimkakuz200
vadimkakuz200
28.04.2020
Ну смари значит, пример про отрезки,
На отрезке AB лежит точка Х , значит х принадлежит отрезку АВ
про твои примеры можно так сказать:
первый хызы что сказать , а во втором 6€[4;64].
мол число 6 принадлежит промежутку от 4 до 64
4,6(24 оценок)
Открыть все ответы
Ответ:
sapesalex
sapesalex
28.04.2020

#1

а)

 {(y^{10})}^{6} \times { {(y}^{5})}^{5} \times ( { {(y}^{3})}^{2} = \\ = {y}^{60} \times {y}^{25} \times {y}^{6} = {y}^{91}

б)

 {27}^{3} \times {3}^{6} \times {81}^{4} = {3}^{9} \times {3}^{6} \times {3}^{16} = \\ = {3}^{31}

в)

( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y} )^{4} \times ( \frac{x + y}{x - y} )^{11} = \\ = ( \frac{x - y}{x + y} )^{6} \div ( \frac{x + y}{x - y})^{4} \times ( \frac{x - y}{x + y})^{ - 11} = \\ = ( \frac{x - y}{x + y})^{ - 5} \div ( \frac{x + y}{x - y} )^{4} = \\ = {( \frac{x + y}{x - y})}^{5} \div ( \frac{x + y}{x - y} )^{4} = \\ = \frac{x + y}{x - y}

г)

 {8}^{9} \div 16^{3} \times {128}^{3} \div {64}^{2} = {2}^{27} \div {2}^{12} \times {2}^{21} \div {2}^{12} = \\ = {2}^{24}

4,6(10 оценок)
Ответ:
кира674
кира674
28.04.2020

1) D(y) = [0; + ∞) \ {1; 2/3}

2) D(y) = [–3; 3] \ {–2}.

Объяснение:

Области определения тут могут быть ограничены следующим: определением корня чётной степени, а также тем, что знаменатель в дроби не равен нулю.

1) Присутствует

\sqrt[4]{x}

Значит х≥0.

Далее знаменатель ≠ 0. Кстати, это ещё и корень с чётной степенью (2), т.е. есть ещё и ограничение, что

3x {}^{2} - 5x + 2 \geqslant 0

А когда корень из числа равен нулю? Тогда и только тогда, когда само подкоренное выражение равно нулю. И да, всё решение рассматриваем на множестве действительных (они же вещественные) чисел.

Значит нужно решить квадратное уравнение, тогда его корни и будут недопустимыми значениями.

3x {}^{2} - 3x - 2x + 2 = 0 < = 3x(x - 1) - 2(x - 1) = 0 < = (x - 1) \times (3x - 2) = 0

Т. о. получается совокупность – либо х = 1, либо 3х = 2. Значит либо х = 1, либо х = 2/3. Так как оба корня является решением квадратного уравнения, при них выражение не будет определено (деление на ноль) т.е. в область определения следует записать: х ≠ 1, х≠2/3.

Т.о. следующие ограничения: х≥0, х ≠ 2/3, х≠1. Все они должны выполняться одновременно, значит D(y) = [0; + ∞) \ {1; 2/3}. Если что, D – обозначение области определения функции, \ – операция "вычитания" из множества.

2) Тут знаменатель тоже не должен быть равен нулю т.е. х + 2 ≠ 0 <=> х ≠ –2.

И также в числителе корень с чётной степенью, значит подкоренное выражение

9 - {x}^{2} \geqslant 0 < = (3 - x) \times (3 + x) \geqslant 0

Предлагаю решить методом интервалов, так как здесь сравнение с нулём.

Необходимо начертить координатную ось с соответствующей подписью (в данном случае х), далее отметить значения, при которых один из множителей обращается в ноль – здесь это х = 3 и х = – 3. Так получились три области, в которых значение произведения/выражения данного одного знака (больше или меньше нуля) Далее подставляем в х огроооомное число, явно превышающее 3 (обозначенное число-граница) т.к. так удобнее и узнаём, больше или меньше 0 это произведение – оно меньше, значит ставим минус в той области. Далее можно не подставлять, а понять, что так как нет других множителей и множителя в чётной степени, знак выражения в областях будет чередоваться. Числа-границы нужно учитывать в ответ (закрашивая), если выражение может быть равно нулю (т.е. ≥0) Таким образом решением является следующее множество: [–3; 3]

Все условия/ограничения должны выполняться, т.е. получается система из х≠–2 и 3 ≥ х ≥–3. Значит область определения D(y) = [–3; 3] \ {–2}.


решите эти два примера , заранее благодарю .
решите эти два примера , заранее благодарю .
4,4(56 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ