Решение: Пусть x - скорость первого автомобиля. Тогда - x-10 - скорость второго автомобиля. Зная, что первый автомобиль на 1 час проехал 300 км быстрей чем второй, составим и решим уравнение: (300/x-10)-(300/x)=1 (300x-300x+3000)/(x^2-10x)=1 3000/(x^2-10x)=1 x^2-10x=3000 x^2-10x-3000=0 D=b^2-4ac D=12100>0-2 корня. x=(-b+√D)/2a x=(10+110)/2 x=120/2 x=60 Второй корень я рассматривать не стану, т.к. он отрицателен, что не подходит по смыслу задачи. Скорость второго автомобиля равна 60 -10=50 км/ч ответ:Скорость первого автомобиля равна 60 км/ч, а скорость второго автомобиля равна 50 км/ч.
(а+1)во 2 степени-(2а+3)во 2 степени=0 Нужно раскрыть скобки по формулам сокращенного умножения Сначала раскроем (а+1)во второй степени,получится а в квадрате +2а+1 Дальше рассмотрим оставшиеся,то есть -(2а+3)во второй степени -(4а в квадрате +12а+9 ) Раскроем скобки и получится -4а в квадрате -12а-9 В итоге получилось а в квадрате +2а+1-4а в квадрате -12а-9 Находим подобные и получается -3 а в квадрате -10 а -8=0 Теперь решаем дискриминантом Д(дискриминант)=корню из четырех ,то есть двум А1= -2 целые одна третья А2= -1
Второе уравнение решается аналогично 25 с в квадрате +80с +64 -с в квадрате +20с-100=0 Что-бы было удобней вычитать Д сократим все на два,и получится 6с в квадрате+25с-9=0 Д=корень из 841 =29 С1=1/3 С2=11/3=3 целых 2/3
5,98×10²⁴ / 1,90×10²⁸ = 3,1 × 10 в минус 4 степени.
Пока.