просто подряд подставлять целые 
при
имеем корни

Первые два в промежуток не попадают, третий - попадает.
при
имеем корни
,
первый корень в промежуток не попадает, другие два - попадают.
Если подставлять
, то увидим, что полученные в итоге корни уже не будут вписываться в границы отрезка.
универсальный, но не очень удобный): оценить и проверить, при каких целых
неравенство
имеет решение. Для этого все серии корней по отдельности подставляем вместо
:

Очевидно, что целых
, удовлетворяющих последнему неравенству, не существует. Т.е. ни один из корней этой серии промежутку не принадлежит.

Последнему неравенству удовлетворяет только одно целое
-
. Корень находим при подстановке значения
в соответствующую серию.
То же можно проделать с третьей серией и убедиться, что неравенство удовлетворяют только 2 значения
и
. Их также подставляем в соответствующую серию и находим корни.