5p(4p-3) = 20p^2 - 15p (10p-2.5)(2p-1)=20p^2 - 10p - 5p + 2.5 Ok. Доводим по методу от противоположного. Пусть значение первого РАВНО значению второго, тогда получаем: 20p^2 - 15p = 20p^2 - 15p + 2.5 | 15p - 20p^2 0 = 2.5. но 0 не равно 2.5. Очевидно, что 2.5 больше за ноль, тогда второе больше первого. Проверка: 20p^2 - 15p + 2.5 > 20p^2 - 15p | Также как и в уранениях, можна добавлять и отнимать одинаковые числа поэтому отнимем (-15р) и (20p^2) получаем 2.5 > 0 что и требовалось доказать.
6х^2-3x =0 вынесем общий множитель за скобки: 1) 3x(2x-1)=0 произведение двух множителей равно 0, если один из них или оба равны 0: 3х=0 или 2х-1=0 первый корень х=0 2х-1=0 2х=1 х=1/2 - второй корень. 2)25х^2=1 x^2=1/25 x=+- 5 3)4x^2+7x-2=0 вычислим дискриминант D=b^2-4ac D=49+32=81 x=(-7+-9)/8 x первое =-2, х второе х=2/8=1/4 4)4x^2+20x+1=0 D=400-16=384 x=(-20+-VD):8 V - обозначение квадратного корня 5) 3x^2 + 2x + 1 =0 D=4-12=-8<0 уравнение решений не имеет, т.к дискриминант отрицательный 6) х^2 + 2,5x -3=0 D= 2,5^2-4*1*(-3)=18,25 x=( -2,5+- VD):2 7) x^4 -13x^2 +36=0 введем обозначение x^2= t, получим новое уравнение t^2 -13t +36=0 D= 169+144=313 К сожалению, корень квадратный из дискриминанта не извлекается. Надо проверить правильность условия, потому что нам нужно решит уравнение х^2=t и найти х.
(10p-2.5)(2p-1)=20p^2 - 10p - 5p + 2.5
Ok. Доводим по методу от противоположного. Пусть значение первого РАВНО значению второго, тогда получаем:
20p^2 - 15p = 20p^2 - 15p + 2.5 | 15p - 20p^2
0 = 2.5. но 0 не равно 2.5.
Очевидно, что 2.5 больше за ноль, тогда второе больше первого.
Проверка:
20p^2 - 15p + 2.5 > 20p^2 - 15p | Также как и в уранениях, можна добавлять и отнимать одинаковые числа поэтому отнимем (-15р) и (20p^2)
получаем 2.5 > 0 что и требовалось доказать.