лучше конечно читать параграф но я нашёл обьяснения
Объяснение:
Нули функции
Нулём функции называется то значение х, при котором функция обращается в 0, то есть f(x)=0.
Нули – это точки пересечения графика функции с осью Ох.
Четность функции
Функция называется чётной, если для любого х из области определения выполняется равенство f(-x) = f(x)
Четная функция симметрична относительно оси Оу
Нечетность функции
Функция называется нечётной, если для любого х из области определения выполняется равенство f(-x) = -f(x).
Нечетная функция симметрична относительно начала координат .
Функция которая не является ни чётной ,ни нечётной называется функцией общего вида.
Возрастание функции
Функция f(x) называется возрастающей, если большему значению аргумента соответствует большее значение функции, т.е. x2>x1 → f(x2)>f(x1)
Убывание функции
Функция f(x) называется убывающей, если большему значению аргумента соответствует меньшее значение функции, т.е. x2>x1 → f(x2)<f(x1)
Промежутки, на которых функция либо только убывает, либо только возрастает, называются промежутками монотонности. Функция f(x) имеет 3 промежутка монотонности:
(-∞ x1), (x1, x2), (x3; +∞)
Находят промежутки монотонности с сервиса Интервалы возрастания и убывания функции
Локальный максимум
Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) > f(x)
Локальный минимум
Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) < f(x).
Точки локального максимума и точки локального минимума называются точками локального экстремума.
x1, x2 - точки локального экстремума.
Периодичность функции
Функция f(x) называется периодичной, с периодом Т, если для любого х выполняется равенство f(x+T) = f(x).
Промежутки знакопостоянства
Промежутки, на которых функция либо только положительна, либо только отрицательна, называются промежутками знакопостоянства.
f(x)>0 при x∈(x1, x2)∪(x2, +∞), f(x)<0 при x∈(-∞,x1)∪(x1, x2)
Непрерывность функции
Функция f(x) называется непрерывной в точке x0, если предел функции при x → x0 равен значению функции в этой точке, т.е. .
Точки разрыва
Точки, в которых нарушено условие непрерывности называются точками разрыва функции.
x0- точка разрыва.
v автомобиля=60км/ч
Объяснение:
пусть v автобуса=х, тогда v автомобиля=х+20. 10минут=⅙ часа, а 5 минут=1/12часа, и если автомобиль потратил меньше времени на ⅙ и 1/12, то автобус потратил больше, именно на это время. Автобус потратил на поездку 30/х, а
автомобиль: 30/(х+20). Зная разницу во времени составим уравнение:
30/х-30/(х+20)=⅙+1/12 здесь найдём общий знаменатель в обеих частях уравнения и получим:
(30х+600-30х)/(х(х+20))=(2+1)/12
600/(х²+20х)=3/12
600/(х²+20х)=1/4
х²+20х=600×4
х²+20х=2400
х²+20х-2400=0
D=400-4×(-2400)=400+9600=10000
x1= (-20-100)/2= -120/2= -60
x2=( -20+100)/2=80/2=40
Итак: х1 нам не подходит поскольку скорость не может быть отрицательной поэтому мы используем х2=40. Итак: v автобуса, =40км/ч, тогда v автомобиля=40+20=60км/ч
1.2х>2.4
х>2
ответ: 3
2) 5/5+4x>1+x
3x>0
x>0
ответ: 1
Удачи!