найдем производную f´(x)=( x^4-2x^2-3)´=( x^4)´-2(x^2)´-(3)´=4х³-4х-0=4х³-4х=4х(х²-1)=4х(х-1)(х+1) найдем критические точки, т.е f´(x)=0 4х(х-1)(х+1)=0 х=0 или х=1 или х=-1 ++→х f´(-2)= 4*(--+1)= 4*(-)< 0 ( нас интересует знак, а не число) f´(-0,5)= 4*(-0,,5-,5+1)= 4*(-0,,5)*0,5> 0 f´(0,5)= 4*0,5*(0,5-1)(0,5+1)=4*0,5*(-0,5)*1,5< 0 f´(2)= 4*2*(2-1)(2+1)=4*2*1*3> 0 в точке х=-1 производная меняет знак с – на +, значит это точка минимума; в точке х=0 производная меняет знак с +на -, значит это точка максимума; в точке х=1 производная меняет знак с – на +, значит это точка минимума; 2) f(x)= x^2+3x /x+4 найдем производную f´(x)=( x^2+3x /x+4)´=( x^2+3x)´(х+4)- (x^2+3x)( x+4)´/ (x+4)² =(2х+3)(х+²+3х)*1/(х+4)²=(2х²+8х+3х+12-х²-3х)/(х+4)²=(х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)² найдем критические точки, т.е f´(x)=0 (х²+8х+12)/(х+4)²=0 х²+8х+12=0 и х+4≠0; х≠-4 д=8²-4*1*12=64-48=16; х₁=-8+√16/2=-2; х₂=-8-√16/2=-6 т.е. (х²+8х+12)/(х+4)²=(х+2)(х+6)/(х+4)², т.к. (х+4)²> 0, нас интересует только знак, поэтому рассматриваем равносильное выражение (х+2)(х+6) ++→х f´(-7)= (-7++6)=-5*(-1)> 0 f´(-5)= (-5++6)=-3*1< 0 f´(-3)= (-3++6)=-1*3< 0 f´(0)= (0+2)(0+6)=2*6> 0 в точке х=-6 производная меняет знак с + на - значит это точка максимума; в точке х=-4 производная не меняет знак ,значит это точка не является точкой экстремума ; в точке х=-2 производная меняет знак с – на +, значит это точка минимума; удачи!
Объяснение: это формулы сокращенного умножение, если умножить все это по порядку можно получить:
а) х³-y³
во втором точно также потому что 25 это 5²;
б) 5³-a³=> 125-a³
в) (2m)³-(5n)³=> 8m³-125n³
г) (7p)³ + q³ => 343p³ + q³
д) (х/2)³- (y/3)³ => x³/8 - y³/27
е) (0,1а)³-(0,2b³) => 0,001а³ - 0,008b³;
Дополнительно:
Это нельзя объяснить, если раскрыть скобки умножая по правилам алгебры получаться эти значения, я напишу тебе 7 формул
1) a²-b²=(a-b)×(a+b);
2) (a+b)² = a²+2ab+b²;
3) (a-b)² = a²-2ab+b²;
4) a³-b³= (a-b)×(a²+ab+b²);
5) a³+ b³ = (a+b)×(a²-ab+b²);
6) (a-b)³= a³-3a²b+3ab²-b³;
7) (a+b)³ = a³+3a²b+3ab²+b³;
Вычислим длины сторон
Можно заметить что треугольник прямоугольный, с гипотенузой ВС.
Найдем уравнение высоты через вершину A
найдем угловой коэффициент k1 прямой BC.Подставляя вместо k1 угловой коэффициент данной прямой, получим : 2k1=-1, откуда k1=-1/2.Получаем:
x=2
y=-2
D(2;-2)
Длину высоты можно вычислить и по другой формуле, как расстояние между точкой A(-2;0) и точкой D(2;-2).