ответ: первая догонит вторую на расстоянии 94 км от города В и это случится через 2 часа.
Объяснение:
пусть расстояние от В, на котором первая догонит вторую, равно х, тогда машина из А проехала (96+х) км до момента встречи, а выехавшая из В, х км, т.к. их скорости известны, то ясно, что времени они затратили одно и то же. т.к. выезжали одновременно.
(96+х)/95=х/47;
(96+х)*47=95х; 96*47=х*(95-47);
48х=96*47; х=2*47=94, значит, первая догонит вторую на расстоянии 94 км от города В ;
первая машина, как и вторая затратила на это 94/47=2/часа/, или
же можно и так: (96+94)/95=190/95=2
Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
х+2у-7 = 7-7
х+2у =0
2) 5х - у = 2
5х - у-2 = 2-2
5х - у - 2 = 0
3) 2х+5у=14
2х+5у-14=14-14
2х+5у-14=0
4) 3х-2у=-17
3х-2у+17=17+17
3х-2у+17=0