1) у = √(8 - 0,5х²) Подкоренное выражение не должно быть отрицательным, поэтому 8 - 0,5х² ≥ 0 решаем уравнение 8 - 0,5х² = 0 х² = 16 х1 = -4; х2 = 4 График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4. Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность f(-x) = (-x + 2sinx)/(3cosx + x²) f(-x) = -(x - 2sinx)/(3cosx + x²) Очевидно, что функция нечётная, потому что f(-x) = -f(x) Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими. Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) = = ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x) Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x F(x) = 0 x/2 - 4/x = 0 ОДЗ: х≠0 х² - 8 = 0 х² = 8 х1 = -2√2; х2 = 2√2; Функция равна нулю при х =-2√2 и х = 2√2
1) sin a = √2/2; a1 = pi/4+2pi*k; cos a1 = √2/2 a2 = 3pi/4+2pi*k; cos a2 = -√2/2 cos(60 + a1) = cos 60*cos a1 - sin 60*sin a1 = = 1/2*√2/2 - √3/2*√2/2 = √2/4*(1 - √3) = -√2(√3 - 1)/4 cos(60 + a2) = cos 60*cos a2 - sin 60*sin a2 = = -1/2*√2/2 - √3/2*√2/2 = -√2/4*(1 + √3) = -√2(√3 + 1)/4
2) sin a = 2/3; cos b = -3/4; a ∈ (pi/2; pi); b ∈ (pi; 3pi/2) cos a < 0; sin^2 a = 4/9; cos^2 a = 1-4/9 = 5/9; cos a = -√5/3 sin b < 0; cos^2 b = 9/16; sin^2 b = 1-9/16 = 7/16; sin b = -√7/4 sin(a+b) = sin a*cos b + cos a*sin b = = 2/3*(-3/4) + (-√5/3)(-√7/4) = -6/12 + √35/12 = (√35 - 6)/12 cos(-b) = cos b = -3/4
18х-2х+6=16х+20
18х-2х-16х=20-6
х=14